�

�
�
�
�Warranty

The software and accompanying documentation are provided as is, without warranty of any kind, expressed or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. In no event will the author be held liable for any loss of profit or any other commercial damages, including but not limited to direct, indirect, special, incidental, and consequential damages.

License Agreement

Firefly Software hereby grants you, the end user, a limited license to use this software for evaluation purposes only, for a period of time not to exceed sixty, (60) days from date of installation. Upon conclusion of the "trial" period, this limited license will expire and you MUST either register the software or discontinue its use by uninstalling it from any and all hardware upon which it is installed. Use of this software beyond the trial period without registration is in violation of the terms of this limited licensing agreement and doing so will cause all of your teeth to fall out and your hair to spontaneously ignite and grow back an embarrassing shade of green.

The trial version of this software may be freely distributed by anyone so long as it is distributed in its unmodified, archived state with all of it's associated files and provided that no fee is charged for the service above and beyond the cost of the media and it's distribution, not to exceed the equivalent of $8.00 U.S. Dollars. The end user must not attempt to de-compile, disassemble, reverse engineer or otherwise alter the software in any way.

As with all copyrighted software, this software, and all of its accompanying documentation, are protected by United States Copyright law and by international treaty provisions as well.

All rights not otherwise expressed herein are reserved by Firefly Software.

How to Obtain a Registered Copy of TEXTools

To download the latest trial version of TEXTools or to obtain a copy of the registered version (cost: $35.00), containing filters and options not included with the trial version, please visit our website at:

www.fireflysoftware.com.

Direct any E-mail inquiries to inquiry@fireflysoftware.com

Thank you for your support!

Our Support Policy

All registered users of TEXTools receive technical support. If you require technical assistance and are a registered user of TEXTools, you can contact Firefly Software at support@fireflysoftware.com.

� INCLUDEPICTURE "E:\\PICTURES\\Business\\ASPLOGO.bmp" * MERGEFORMAT ���
Firefly Software is a member of the Association of Shareware Professionals (ASP). ASP wants to make sure that the shareware principle works for you. If you are unable to resolve a shareware-related problem with an ASP member by contacting the member directly, ASP may be able to help. The ASP Ombudsman can help you resolve a dispute or problem with an ASP member, but does not provide technical support for member’s products. Please write to the ASP Ombudsman at 545 Grover Road, Muskegon, MI 49442-9427 USA, FAX 616-788-2765 or send a CompuServe message via CompuServe Mail to ASP Ombudsman 70007,3536

TEXTools was developed to run under MSDOS, Windows 95 and Windows NT on the “X86” family of computers and compatibles
�
Table of Contents

� TOC \o "1-3" �Introduction	� GOTOBUTTON _Toc385514830 � PAGEREF _Toc385514830 �1��
A Bit of History	� GOTOBUTTON _Toc385514831 � PAGEREF _Toc385514831 �1��
Filters and Piping	� GOTOBUTTON _Toc385514832 � PAGEREF _Toc385514832 �2��
Getting Started	� GOTOBUTTON _Toc385514833 � PAGEREF _Toc385514833 �2��
Command Syntax	� GOTOBUTTON _Toc385514834 � PAGEREF _Toc385514834 �3��
Floating Point Numeric Formats	� GOTOBUTTON _Toc385514835 � PAGEREF _Toc385514835 �4��
Dealing with Long Pipes	� GOTOBUTTON _Toc385514836 � PAGEREF _Toc385514836 �4��
Debugging Pipes	� GOTOBUTTON _Toc385514837 � PAGEREF _Toc385514837 �5��
A Debugging Example	� GOTOBUTTON _Toc385514838 � PAGEREF _Toc385514838 �6��
A Pitfall	� GOTOBUTTON _Toc385514839 � PAGEREF _Toc385514839 �7��
Calling TEXTools from Batch Files	� GOTOBUTTON _Toc385514840 � PAGEREF _Toc385514840 �7��
Running under Windows	� GOTOBUTTON _Toc385514841 � PAGEREF _Toc385514841 �8��
Filter Reference	� GOTOBUTTON _Toc385514842 � PAGEREF _Toc385514842 �9��
ADD	� GOTOBUTTON _Toc385514843 � PAGEREF _Toc385514843 �10��
APPEND	� GOTOBUTTON _Toc385514844 � PAGEREF _Toc385514844 �10��
BASE2DEC	� GOTOBUTTON _Toc385514845 � PAGEREF _Toc385514845 �11��
BLANK	� GOTOBUTTON _Toc385514846 � PAGEREF _Toc385514846 �11��
BOTTOM*	� GOTOBUTTON _Toc385514847 � PAGEREF _Toc385514847 �11��
BREAK*	� GOTOBUTTON _Toc385514848 � PAGEREF _Toc385514848 �12��
CENTER*	� GOTOBUTTON _Toc385514849 � PAGEREF _Toc385514849 �12��
CHECKSUM*	� GOTOBUTTON _Toc385514850 � PAGEREF _Toc385514850 �13��
CLEAN*	� GOTOBUTTON _Toc385514851 � PAGEREF _Toc385514851 �14��
COLORDER*	� GOTOBUTTON _Toc385514852 � PAGEREF _Toc385514852 �14��
COUNT	� GOTOBUTTON _Toc385514853 � PAGEREF _Toc385514853 �17��
CULL	� GOTOBUTTON _Toc385514854 � PAGEREF _Toc385514854 �18��
DEC2BASE*	� GOTOBUTTON _Toc385514855 � PAGEREF _Toc385514855 �18��
DEL	� GOTOBUTTON _Toc385514856 � PAGEREF _Toc385514856 �19��
DIV*	� GOTOBUTTON _Toc385514857 � PAGEREF _Toc385514857 �19��
DUPL*	� GOTOBUTTON _Toc385514858 � PAGEREF _Toc385514858 �20��
EXCL	� GOTOBUTTON _Toc385514859 � PAGEREF _Toc385514859 �21��
EXTR	� GOTOBUTTON _Toc385514860 � PAGEREF _Toc385514860 �21��
FILES	� GOTOBUTTON _Toc385514861 � PAGEREF _Toc385514861 �22��
FROMCRT	� GOTOBUTTON _Toc385514862 � PAGEREF _Toc385514862 �24��
HCRUN	� GOTOBUTTON _Toc385514863 � PAGEREF _Toc385514863 �24��
INCL	� GOTOBUTTON _Toc385514864 � PAGEREF _Toc385514864 �24��
INLINE*	� GOTOBUTTON _Toc385514865 � PAGEREF _Toc385514865 �25��
INS	� GOTOBUTTON _Toc385514866 � PAGEREF _Toc385514866 �26��
JOIN LINES*	� GOTOBUTTON _Toc385514867 � PAGEREF _Toc385514867 �27��
JOIN TO	� GOTOBUTTON _Toc385514868 � PAGEREF _Toc385514868 �28��
LEAD	� GOTOBUTTON _Toc385514869 � PAGEREF _Toc385514869 �30��
LEFT	� GOTOBUTTON _Toc385514870 � PAGEREF _Toc385514870 �30��
LINENO	� GOTOBUTTON _Toc385514871 � PAGEREF _Toc385514871 �30��
LOWER	� GOTOBUTTON _Toc385514872 � PAGEREF _Toc385514872 �32��
MUL	� GOTOBUTTON _Toc385514873 � PAGEREF _Toc385514873 �32��
NOBLANK	� GOTOBUTTON _Toc385514874 � PAGEREF _Toc385514874 �33��
OVERLAY	� GOTOBUTTON _Toc385514875 � PAGEREF _Toc385514875 �33��
PADB*	� GOTOBUTTON _Toc385514876 � PAGEREF _Toc385514876 �34��
PADL*	� GOTOBUTTON _Toc385514877 � PAGEREF _Toc385514877 �34��
PADR	� GOTOBUTTON _Toc385514878 � PAGEREF _Toc385514878 �34��
PARSE	� GOTOBUTTON _Toc385514879 � PAGEREF _Toc385514879 �34��
REFORM	� GOTOBUTTON _Toc385514880 � PAGEREF _Toc385514880 �35��
REPL	� GOTOBUTTON _Toc385514881 � PAGEREF _Toc385514881 �36��
REVERSE*	� GOTOBUTTON _Toc385514882 � PAGEREF _Toc385514882 �37��
RIGHT*	� GOTOBUTTON _Toc385514883 � PAGEREF _Toc385514883 �38��
RULER	� GOTOBUTTON _Toc385514884 � PAGEREF _Toc385514884 �38��
SHIFT*	� GOTOBUTTON _Toc385514885 � PAGEREF _Toc385514885 �38��
SPLIT	� GOTOBUTTON _Toc385514886 � PAGEREF _Toc385514886 �39��
STRIP	� GOTOBUTTON _Toc385514887 � PAGEREF _Toc385514887 �40��
SUB*	� GOTOBUTTON _Toc385514888 � PAGEREF _Toc385514888 �40��
TABS	� GOTOBUTTON _Toc385514889 � PAGEREF _Toc385514889 �40��
TOCRT	� GOTOBUTTON _Toc385514890 � PAGEREF _Toc385514890 �40��
TOP	� GOTOBUTTON _Toc385514891 � PAGEREF _Toc385514891 �41��
TOTAL*	� GOTOBUTTON _Toc385514892 � PAGEREF _Toc385514892 �41��
TRAIL	� GOTOBUTTON _Toc385514893 � PAGEREF _Toc385514893 �43��
TRUNC	� GOTOBUTTON _Toc385514894 � PAGEREF _Toc385514894 �43��
UNIQUE	� GOTOBUTTON _Toc385514895 � PAGEREF _Toc385514895 �43��
UPPER	� GOTOBUTTON _Toc385514896 � PAGEREF _Toc385514896 �43��
VACUUM	� GOTOBUTTON _Toc385514897 � PAGEREF _Toc385514897 �44��
VCRUN	� GOTOBUTTON _Toc385514898 � PAGEREF _Toc385514898 �44��
Appendix A The ASCII Character Set	� GOTOBUTTON _Toc385514899 � PAGEREF _Toc385514899 �45��
Appendix B Limitations, Incompatibilities and Unwanted Features	� GOTOBUTTON _Toc385514900 � PAGEREF _Toc385514900 �46��
Appendix C Optimizing the Performance of TEXTools	� GOTOBUTTON _Toc385514901 � PAGEREF _Toc385514901 �48��
Appendix D Environment Variables	� GOTOBUTTON _Toc385514902 � PAGEREF _Toc385514902 �49��
�

Note: Filter options shown with an asterisk, (*) are available only with the registered version of TEXTools.�Introduction

TEXTools is a powerful integrated collection of 50+ DOS filters that you can easily combine together like building blocks, to form “mini-programs”, (called pipes) that process text for achieving various goals. It can be used interactively from the command prompt to quickly handle ad hoc requests, or it can be called from batch file processes, (even other programs) to handle more complex tasks. TEXTools can be used to:

extract data from cumbersome log files
organize lists
customize text output from other programs
reformat program source code
automate manual processes
count lines of text
total values
interface incompatible software systems
build reports
convert exported text for use by other software packages
perform textfile searches
perform base conversions
format mailing lists for printing
search for and/or remove duplicates
convert tabular data to delimited and vice versa
construct tables

etc…

A Bit of History

TEXTools was originally conceived in 1986 as a shareware program known as FCP. It started out with about twenty useful DOS filters and grew steadily to about thirty. FCP was very popular among friends and associates who tried it. Upon completion of version 1.0, I immediately took to uploading it to local bulletin board systems and stopped after uploading it to about five of them. It seemed to be harder work promoting FCP than it was to develop it. I soon moved on to other endeavors. Given the modest effort of promoting FCP and it's poor documentation, it went nowhere. Ten years and a handful of new filters later, I found that I was still using FCP to do my bidding. It was time for a change.

I began transforming FCP to become TEXTools in 1996 with the addition of about fifteen new filters. I rewrote the interface to many of the existing filters to provide more usability. After months of hard work TEXTools had begun to match my newfound expectations. I had a text processing utility based on the ultimate paradigm, pipes and filters, that had the potential of solving many complex text processing problems with a minimum of effort, either from batch files or interactively, from the DOS command prompt. Solutions to text processing problems could literally be constructed by simply adding filters together much like a child creates using wooden blocks.

Still, something was missing. The very same pipes and filters paradigm that made TEXTools a dream to work with, also limited it's execution speed. Intermediate file creation, (a byproduct of piping) was stealing it's potential. Although FCP had served me well with that very same limitation for ten years, I felt that improvements should be made. Enter the virtual command line. I knew that if TEXTools could execute it's filter instructions from somewhere other than the DOS command line, the speed limitations due to intermediate file creation and the loading of the executable would be history. As a result of these improvements, TEXTools can now execute filter instructions directly from a text file as well as from the actual command line itself. Besides increased execution speed, other advantages of doing so were realized as well (see the Filter Reference section concerning the INLINE option.

Filters and Piping

Any program whose standard input can be redirected, using the input redirection operator, “<” to come from a source other than the keyboard and whose standard output can be redirected, using the output redirection operator, “>” to go to a destination other than the CRT monitor is known as a filter. You are probably already familiar with the DOS filters, MORE and SORT. TEXTools is a collection of filters contained in a single, executable load module, each of which is invoked as a separate option. Filters can be strung together to form sequences known as pipes which can be used for processing input text streams.

Getting Started

To install TEXTools, simply unarchive the contents of the .ZIP file into an empty directory. You can then copy T.EXE into a directory that is searched according to the path that you have set up on your machine. Typing the command, “PATH” followed by a carriage return at the DOS prompt should result in a string of directories separated by semicolons. Installing TEXTools into one of these directories, should enable you to access TEXTools from any directory on your computer.

To obtain a filter option summary screen, execute TEXTools, (T.EXE) without parameters. If your system has a printer, you can send the information to it by redirecting the command's output to it by using the “>” redirection symbol:

T >PRN

Remember that you'll have to “press any key” twice to arrive at the filter option summary screen in TEXTools, but you won't be prompted to do so if the output is being redirected to the printer.

Command Syntax

The command syntax used to execute TEXTools is as follows:

<Text Source> | T <Option> <Parameters> [RS <Output>]

<Text Source> is any program that generates redirectable text output. Examples include the DOS commands DIR, ECHO and TYPE as well as TEXTools itself.

“|” is the piping operator, (found on the same key as the backslash character, “\”).

<Option> is any one of TEXTools recognized filter options.

<Parameters> are those parameters needed by a TEXTools option.

RS is one of the DOS redirection symbols,

“>” used to send output to a destination, or
“>>” used to append output to a destination.

<Output> can be a file, or it can be a device such as LPT1. If no redirection is specified, the resulting output is displayed to the screen, (CON, or console device).

The following are some simple pipes created using TEXTools:

type list | T parse | T upper | SORT | T unique
type prgm.pas | T lineno >prn
dir/w | T excl ' ' 1 1 | T repl '#09' '#0D#0A'
dir | T incl '-' | T reform 1 13 24 39

The string parameters used by various TEXTools options must be single-quoted strings. To include a single quote into a string, you must place two of them together, thus the string, '''' represents a single quote mark.

It is often desired to place non-printing characters into a string. TEXTools allows you to do this by entering the character, “#” into the string followed by a two digit, (hexadecimal) value which all together, represents an ASCII character. Again, to include the character, “#” into a string, two of them must appear together. The string, '#0D#0A' represents a carriage return/linefeed pair. Note that the hexadecimal value following each “#” character in a string must contain exactly 2 digits.

In order for strings to compare in TEXTools, they must be of like CASE.

Floating Point Numeric Formats

Some of the TEXTools filters perform mathematical functions on the input text stream. The numeric values processed in the input text must follow standard mathematical conventions. All such values may contain the digits, “0” to “9”, a leading sign character, “+” or “-”, and a decimal point, “.”. Exponential or scientific notation is also allowed. All of the following represent valid numeric values to TEXTools:

1
2.0
3.5E2
3.5E+2
3.5E-2
-16.882

The field width and the number of decimals for displayed floating point values in TEXTools can be configured by setting the environment variables, DECIMALS and WIDTH prior to calls made to TEXTools. DECIMALS defaults to 2 and WIDTH defaults to 6.

Dealing with Long Pipes

Pipes can become rather lengthy at times. DOS limits a command line to 128 characters maximum unless you are running some sort of memory resident program that extends this limit. In batch files, you may not want pipes to extend beyond 80 characters. To avoid extremely long pipes in either case, you can break them into shorter segments by redirecting their output into a temporary file using the DOS redirection symbol, “>”. The temporary file is used to transfer the intermediate results to the next set of filters contained in following pipe segment. The pipe,

type names.txt | SORT | T padr 15 ' ' | T colorder 5 3 | T join lines 3

could be broken down into two smaller pipes:

type names.txt | SORT | T padr 15 ' ' >temp.txt
type temp.txt | T colorder 5 3 | T join lines 3

Being able to split pipes onto multiple lines is also nice when they exist within batch files. Short, individual pipes are easier to maintain with an editor.

Debugging Pipes

TEXTools has a built-in debugging tool that allows you to view the intermediate results at each stage of a pipe. This is done by simply setting DOS environment variables prior to executing TEXTools. The following environment variables support debugging:

DEBUG=(ON/OFF)

This variable is used to enable/disable debugging mode. The default is OFF.

DEBUGDEV=(CON/<file name>/<print device>)

This variable allows you to specify where the debugging output will be sent. The default is CON, which is the system output device or console. You can specify a file name and the debugging output will be written to that file. Although print devices, (like LPT1) can be specified, the result is not desirable when debugging command line pipes as the output from each filter is printed on a separate page due to the way TEXTools executes one filter at a time from the command line. To get around this, you can set the debug device to a file name. If the file already exists, TEXTools will append output to the file. You can then send the file to the printer. Another approach is to convert the command line pipe to run in-memory by placing it inside an inline pipe file and referencing it using the INLINE option. Output resulting from debugging in-memory pipes will print as expected without wasting a lot of paper. Note that when DEBUGDEV is set to CON, the TOCRT filter is automatically disabled from sending output to the console also.

STEP=(ON/OFF)

This variable enables single step mode. When DEBUGDEV is set to “CON”, output is automatically paused between filters until you press a key to proceed to the next step. The default is OFF.
�A Debugging Example

The following pipe increments the number read from standard input, (12 in this case), and outputs the resulting value, (13).

echo 12 | T ins 1 '~1 ' | T add 1 2 4 | T repl '~' '#0d#0a~' >temp.txt
type temp.txt | T excl '~' | T lead

To understand how the pipe works, first execute the following set commands:

set debug=on
set decimals=0
set ruler=60

Now, executing the above pipe will result in the following debug output:

[ins 1 '~1 ']
----+----1----+----2----+----3----+----4----+----5----+----6----+----7
~1 12

[add 1 2 4]
----+----1----+----2----+----3----+----4----+----5----+----6----+----7
 13 ~1 12

[repl '~' '#0d#0a~']
----+----1----+----2----+----3----+----4----+----5----+----6----+----7
 13
~1 12

[excl '~']
----+----1----+----2----+----3----+----4----+----5----+----6----+----7
 13

[lead]
----+----1----+----2----+----3----+----4----+----5----+----6----+----7
13

The text displayed below a ruler in the debug output is the result of the filter operation displayed in square brackets above the ruler.

 �A Pitfall

Here’s a pitfall to avoid when making use of piping under MS-DOS or Windows 95, (Windows NT users should reference Item #2 of Appendix B, Limitations, Incompatibilities and Unwanted Features). The following pipe will replace all occurrences of a string with a second one throughout the file, MYFILE.TXT:

type myfile.txt | T repl 'this' 'that' >myfile.txt

If the syntax of every filter in the pipe is okay, then all is fine; however, suppose a quote mark was left off. What is the result? Because the output of the pipe is being redirected to MYFILE.TXT, the contents might very well end up being truncated. To avoid losing your valuable data, the redirection should be done to a temporary file, like TEMP.TXT, or it should be left off altogether so that the results are sent to the computer screen. Then, after all seems okay, the results can be redirected to the original file.

A second solution to the problem is to invoke the pipe from a batch file. Once the batch file has been tried and tested, it can be trusted to work as expected, without human error.

Calling TEXTools from Batch Files

The ability of TEXTools to process text makes it an ideal partner for teaming up with batch files. After all, batch files are merely text files whose contents are interpreted during execution by the operating system. As such, TEXTools can be called from a batch file to construct a temporary batch file on the fly and control can then be handed over to the newly created batch file to carry out some important task. Here, this technique is used to retrieve an error code from a text file to help determine the batch processes’ next step:

type result.txt | T ins 1 '@echo off#0d#0aset result=' >doit.bat
call doit.bat
if '%result%'=='0' goto OK
...

Similarly, the technique is used here to store the system date in an environment variable, DATE, formatted as MM-DD-YYYY:

echo . | T repl ‘.’ ‘#0d’ | DATE | t incl ‘Cur’ | T reverse >t$1.txt
type t$1.txt | T reform 1 10 | T reverse >t$2.txt
type t$2.txt | T ins 1 ‘@echo off#0d#0aset date=’ >t$1.bat
call t$1.bat

Notice how the DATE command is pre-supplied with a carriage return character, (#0d) to avoid the need for user intervention.
Take a deep breath, you’ll need it... By making good use of similar techniques, I recently constructed a SQL database importer process for use at work that monitors an entire sub-directory tree on a NOVELL file server waiting for data log files to appear, extracts test information from them, constructs a SQL script file and then imports the extracted data into a Microsoft SQL Server database by executing the constructed script file via another DOS filter that provides SQL Server database support. Although it was intended only as a prototype, the process is currently still in-use. Because the process makes extensive use of TEXTools’ TOCRT filter and because it is run on an MSDOS based system from a RAMDISK, it’s virtually impossible to discern by mere observation that the process is actually a batch process and not a single, linked executable. It’s controlling logic is actually based on TEXT operations!

Running under Windows

TEXTools is very useful while working under operating systems such as Windows 95 or Windows NT. It complements their interactive user interface by providing the PC end user or software developer with the added ability to batch-process text via a “DOS box”. By simply creating a shortcut, (also known by Windows 3.1 terminology as a PIF), to a TEXTools enhanced batch file, it can easily be executed from within Windows by simply double clicking the shortcut's icon. If the TEXTools batch file takes a file name command line parameter, you can “drag and drop” text files directly onto the batch file's shortcut icon. Often, keystrokes are not required!

�Filter Reference

Following is a command reference of all the filters, or options contained in TEXTools. To gain a better understanding of how they work, try the examples yourself. If you are having difficulty envisioning the intermediate text results between filters, try enabling the debugging mode. It's a great tool for helping you to understand complex pipes.

Text shown in some of the examples is enclosed in double quotes (") where leading or trailing blank characters are significant. A ruler is also used in some examples to help in identifying character positions.

Note: Filter options shown with an asterisk, (*) are available only with the registered version of TEXTools.

�ADD

Syntax	ADD <ins char pos> <arg char pos> <arg char pos> [<arg char pos> …]

The ADD filter adds two or more numbers in each source line and inserts the resulting value into each line at some given character position. The first parameter is the character position where the resulting value of the addition will be inserted into the output text. If zero is specified, no insertion occurs; only the result of the addition is output. The remaining parameters are the character positions of the numbers to be added and in each case, must point at the first digit of the number or at the whitespace prior to it. Given the four numbers stored in MYFILE.TXT:

3.5 12.5 4 10
----+----1----+----2----+----3----+----4----+----5

the pipe,

type myfile.txt | T add 30 1 5 15 20

will result in:

3.5 12.5 4 10 30.00
----+----1----+----2----+----3----+----4----+----5

Specifying a zero insertion point as in this pipe,

type myfile.txt | T add 0 1 5 15 20

causes only the result of the addition to be returned:

30.00
----+----1----+----2----+----3----+----4----+----5

The ADD filter is affected by the environment variables, WIDTH and DECIMALS.

APPEND

Syntax: APPEND <string>

The APPEND filter simply appends the given string to the end of each line.

�BASE2DEC

Syntax: BASE2DEC <radix> [<ins char pos> [<scan char pos>]]

The BASE2DEC filter converts numbers of the given base, (2 - 200), read from standard input, to decimal, (base 10) and inserts the resulting values back into each line. The first parameter is the radix of the number being converted. The second is the character position where the resulting values will be inserted into each input line. If omitted or set to 0, no insertion takes place; instead, the resulting values are returned alone, (one per line). The third parameter is the character position where scanning begins for the values to be converted. If omitted, scanning begins at character position 1.

The numbers read from standard input must conform to the standard ASCII sequence:

“0” - “9”, “A” - “Z” ...

Case is significant when considering numbers to be converted. The value, “f2ac” is not equivalent to “F2AC”! The following pipe will convert the binary value “10011” to decimal and store it in MYFILE.TXT:

echo 10011 | T base2dec 2 >myfile.txt

The BASE2DEC filter can be used in conjunction with the DEC2BASE filter to perform base conversions from one base to another assuming that they are both in the range, (2 - 200). See the DEC2BASE filter for an example of how this is done. The BASE2DEC filter is affected by the WIDTH environment variable.

BLANK

Syntax: BLANK <# of lines>

The BLANK filter outputs a number of blank lines between each line.

BOTTOM*

Syntax: BOTTOM <# of lines>

The BOTTOM filter passes the given number of lines from the end of the input text. It can be used in conjunction with the TOP filter to return a range of lines from the middle of the input text. �Given the following text in MYFILE.TXT,

this is line 1
this is line 2
this is line 3
this is line 4

the following pipe,

type myfile.txt | T top 3 | T bottom 2

will return

this is line 2
this is line 3

BREAK*

Syntax: BREAK <string> ...

The BREAK filter breaks each line of the input text onto multiple lines at each of the locations where the given strings are found. Given the following in MYFILE.TXT, (double quotes added for clarity):

"now is the time for all good men to "
"come to the aid of their country."

the pipe,

type myfile.txt | T break 'all' 'the'

will result in:

"now is"
"the time for"
"all good men to "
"come to"
"the aid of"
"their country."

CENTER*

Syntax: CENTER <width> <string>

The CENTER filter centers the input text in a field of the given character width using the given character string. The following pipe,

echo CENTERED! | t center 50 '-+'

results in:

-+-+-+-+-+-+-+-+-+-+ CENTERED! -+-+-+-+-+-+-+-+-+-
----+----1----+----2----+----3----+----4----+----5

CHECKSUM*

Syntax: CHECKSUM <ins pos> <begin pos> <end pos>

The CHECKSUM filter calculates a checksum for each line of the input text. The first parameter is the character position where the calculated checksum value will be inserted back into the source line. If set to zero, the resulting line-based checksum value is returned, one value per line. If omitted, a single checksum is calculated based on the entire input steam, (including all carriage return / line feed pairs). The second parameter is the beginning character position in the line where the determination of the checksum begins. If omitted, 1 is assumed. The last parameter is the ending character position in the line that is to be included in the checksum calculation. If it is omitted, it defaults to the last character of each input line. Given the file, MYFILE.TXT containing the following text,

now is the time
for all good men
to come to the
aid of their country.

the pipe:

type myfile.txt | T checksum

will return a single checksum value based on the file's entire contents:

7734

Specifying a zero insertion point,

type myfile.txt | T checksum 0

causes a checksum to be returned for each line of text, but not inserted back into each line. Each checksum value is returned alone:

1434
5465
623F
042F

�The pipe,

type myfile.txt | T checksum 1

will return each input line with its checksum value inserted at column 1 as follows:

1434 now is the time
5465 for all good men
623F to come to the
042F aid of their country.

The pipe,

type myfile.txt | T checksum 1 1 10

will calculate a checksum based on the first 10 characters and insert it at column 1:

382D now is the time
7E6C for all good men
2A2E to come to the
223E aid of their country.

CLEAN*

Syntax: CLEAN

The CLEAN filter simply combines both the LEAD and TRAIL filters into one. It removes both leading and trailing whitespace characters.

COLORDER*

Syntax: COLORDER <# of rows> <# of columns>

The COLORDER, (Column Order) filter is used as a pre-filter to the JOIN TO/LINES filters so that the text stream can be reformed into columns that are ordered top to bottom instead of being ordered left to right as would normally be output from the JOIN TO/LINES filter, given a sorted list of items. The first parameter required is the number of rows that you wish to limit the table to. The second is the number of columns.

�Given a list of unordered names in NAMES.TXT,

pat
jim
cindy
ernie
stephanie
brian
bert
susan
randy
leonard
philip
terry
kathy
evan
jacob

and a need to reform the list into a table of three columns of ordered names, the pipe,

type names.txt | SORT | T padr 15 ' ' | T join lines 3

will result in:

bert brian cindy
ernie evan jacob
jim kathy leonard
pat philip randy
stephanie susan terry
----+----1----+----2----+----3----+----4----+----5

Notice that the names are ordered across the table, from left to right, not top to bottom. If we intended for the table to be ordered top to bottom, we would need to use the COLORDER filter ahead of the JOIN LINES filter:

type names.txt | SORT | T padr 15 ' ' | T colorder 5 3 | T join lines 3

This would produce the following output:

bert jacob philip
brian jim randy
cindy kathy stephanie
ernie leonard susan
evan pat terry
----+----1----+----2----+----3----+----4----+----5

Note that the number of lines being joined by the JOIN LINES filter must also be the same as the number of columns specified in the COLORDER filter. See the JOIN TO/LINES filter for other details concerning it’s use.

�As a second example of using the COLORDER filter, suppose you had a list of names and addresses that you needed to create mailing labels from, in NAMES.TXT:

Jim Philips 1290 Pin Oak Ln Westhaven, FL 77392
Ted Crowder 7382 West 21st St. Lincoln, AR 72882
Lisa Taylor 1213 Pompano St. Norden, TX 77283
Laura Michelson 1550 Fenn Way Blvd. Treeville, CO 77662
Peter Piper 8399 Fourth St. Ashton, CT 72882
William Orson 7113 France Ave. Linden KY 66383
Susan Simpson 728 Conner Peak St. Freemont IN, 45892
----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

If your label stock is one label wide, you could simply execute the following pipe,

type names.txt | T blank 1 | T split 26 51

to obtain the desired results:

Jim Philips
1290 Pin Oak Ln
Westhaven, FL 77392

Ted Crowder
7382 West 21st St.
Lincoln, AR 72882

Lisa Taylor
1213 Pompano St.
Norden, TX 77283

Laura Michelson
1550 Fenn Way Blvd.
Treeville, CO 77662

Peter Piper
8399 Fourth St.
Ashton, CT 72882

...

The BLANK filter first double spaces the list of names and the SPLIT filter then splits each line into 3 separate lines. Note that the SPLIT filter doesn’t affect the blank lines as their length, (0) is less than the column positions 26 and 51 at which splitting takes place.

Suppose however that you wanted the labels to be printed on a laser printer, 3 across by say, 15 deep per page. Adding three more filters to the original pipe gives us the pipe,

type names.txt | T blank 1 | T split 26 51 | T padr 25 ' ' >temp.txt
type temp.txt | T colorder 12 3 | T join lines 3

�and its execution delivers the following results:

Jim Philips Laura Michelson Susan Simpson
1290 Pin Oak Ln 1550 Fenn Way Blvd. 728 Conner Peak St.
Westhaven, FL 77392 Treeville, CO 77662 Freemont IN, 45892

Ted Crowder Peter Piper
7382 West 21st St. 8399 Fourth St.
Lincoln, AR 72882 Ashton, CT 72882

Lisa Taylor William Orson
1213 Pompano St. 7113 France Ave.
Norden, TX 77283 Linden KY 66383
----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

Tip: When you present results like these to your boss, be sure to first sprinkle water on your forehead, under your arms etc., pull your shirt out half-way and act real tired.

In this example, I limited the output to 3 labels deep by specifying 12 rows in the COLORDER filter instead of the 60 required, (15 labels (4 lines per label). This allowed the output to span 3 columns for the sake of demonstration, while having data for only 7 labels to work with.

COUNT

Syntax: COUNT

The COUNT filter simply passes a count of the number of lines sent to it. Given the file, MYFILE.TXT containing the following text:

the COUNT filter
returns the number
of lines in
the input text

the pipe,

type myfile.txt | T count

will return:

4

�CULL

Syntax: CULL <string> <string>

The CULL filter removes a range of lines from the output. All lines from the first occurrence of the first string to the following occurrence of the second string are removed.

Given the text contained in the file, MYFILE.TXT,

now is the time
for all
good men to
come to the
aid of their
country.

the pipe,

type myfile.txt | T cull 'for' 'come'

will result in:

now is the time
aid of their
country.

If the two specified strings are found on the same line, then only that line will be removed, (similar to the EXCL filter). The EXTR filter performs the opposite function of CULL; it removes the text between the two strings instead of passing the text.

DEC2BASE*

Syntax: DEC2BASE <radix> [<ins pos> [<scan pos>]]

The DEC2BASE filter converts decimal, (base 10), numbers read from standard input, to another base, (2 - 200), and inserts the resulting values back into the line. The first parameter is the radix being converted to. The second is the character position where the resulting value will be inserted into the input line. If omitted or set to 0, no insertion takes place; instead, the resulting value is returned alone. The third parameter is the character position where scanning begins for the decimal value to be converted. If omitted, scanning begins at character position 1. The following example will convert the decimal value, “255” to hexadecimal and store it in MYFILE.TXT:

echo 255 | T dec2base 16 >myfile.txt

As the filters, BASE2DEC and DEC2BASE can convert to and from decimal, they can be combined to allow conversion from any base to any other base, (2 - 200). The following example converts the binary value to hexadecimal and displays it to standard output:

echo 1010 | T base2dec 2 | T dec2base 16

The DEC2BASE filter is affected by the WIDTH environment variable.

DEL

Syntax: DEL (<character position> <# of characters>) ...

The DEL filter deletes a number of characters from each line at a character position. Multiple deletions may be performed with a single invocation of TEXTools; however, the position parameters must be in ascending order, for example, the following execution of the DEL filter,

type myfile.txt | T del 20 2 5 3 10 4

will cause an error because the position parameters, 20, 5 and 10 are out of order. The corrected version of the pipe is:

type myfile.txt | T del 5 3 10 4 20 2

By specifying the position parameters in ascending order, TEXTools can easily adjust the remaining position parameters by the number of characters thus far deleted during execution of the filter.

DIV*

Syntax: DIV <ins char pos> <arg char pos> <arg char pos>

The DIV filter allows you to perform division with two numbers in the source text and insert the resulting value into the text at some given character position. The first parameter given is where you want the resulting value of the division to be inserted into the output text. If zero is specified, no insertion occurs; only the result of the division is output. The remaining two parameters specify at what character positions the numbers involved in the division are located. Each must point at the first digit of the number or at the whitespace prior to the number. The DIV filter is affected by the environment variables, WIDTH and DECIMALS.

DUPL*

Syntax: DUPL [<begin char pos> <end char pos>]

The DUPL filter outputs only those lines that are duplicated in the input text either based on the entire contents of the line, or on an optional range of character positions supplied. In order for the DUPL filter to work, it must be based on the same character positions that the input text is sorted on. Given the following text,

1 40 now
2 34 is
3 26 the
4 40 time
5 48 for
6 32 all
7 26 good
8 88 men
9 40 to
----+----1----+----2----+----3----+----4----+----5

Suppose you wanted to obtain a listing of all lines that were duplicated based on the 2-digit numbers in the second column. The pipe,

type myfile.txt | SORT /+5 | T dupl 5 6

would result in the desired output:

7 26 good
3 26 the
1 40 now
4 40 time
9 40 to
----+----1----+----2----+----3----+----4----+----5

If, however you just wanted to know which 2-digit numbers were duplicated, you would add an extra couple of filters:

type myfile.txt | SORT /+5 | T dupl 5 6 | T unique 5 6 | T reform 5 6

This would result in a unique list as follows:

26
40

See the section on the UNIQUE filter for details concerning that filter.

�EXCL

Syntax: EXCL <string> [<begin char pos> <end char pos>]

The EXCL filter excludes all lines from output that contain the specified string. If the optional range of character positions is specified, then lines are excluded only if the string exists within that range of character positions. The pipe,

type myfile.txt | T excl ' ' 5 5

will only remove those lines that contain a blank character in character position 5. It should be noted that this pipe will NOT remove actual blank lines from the output since such lines contain NO characters at all. Specifying an empty string, (''), causes all lines to be excluded.

EXTR

Syntax: EXTR <string> <string>

The EXTR filter outputs the range of lines starting from the first occurrence of the first string to the following occurrence of the second string. Given the text contained in the file, MYFILE,

now is the time
for all
good men to
come to the
aid of their
country.

the pipe,

type myfile.txt | T extr 'for' 'come'

will result in:

for all
good men to
come to the

If the two specified strings are found on the same line, then only that line will be extracted.

�FILES

Syntax: FILES <template> [<display option> [<file attributes> [<file limit> [R]]]]

The text source option, FILES is a built-in replacement for using the DOS command, DIR, for obtaining a list of file names. The first command line parameter specifies the file template that files must match to be included in the returned list. This template can contain a complete path name to another directory and it can of course contain wildcard characters. The next parameter is the display option parameter. It specifies what columns of data to include along with the list of file names. The default is 0.

The display option parameter can assume the following values:

1 - the file's attributes

From left to right, they are:

UNUSED
UNUSED
Archive
Directory
VolumeId
System
Hidden
Read only

2 - the file's size

This column is affected by the COMMAS environment variable. By default, commas are displayed. If you need to total up file sizes, first turn comma display off by setting COMMAS=OFF.

4 - the file's last modification date/time

Formatted as “YYYY-MM-DD HH:MM:SS”

Note that it is ordered for sorting.

8 - the file's directory as specified in the file template

Display options can be added together in 16 different display combinations. For example, an option of 6 would include both the file's size and it's time/date of last modification in the resulting list of files.

Use of a display option of 15, as in the following command,

T files c:\thedir*.txt 15

causes all information to be displayed as in this example output:

00100000 65,614 1997-01-11 16:21:48 TEST.TXT
00100000 22,615 1997-01-11 18:50:20 TEST2.TXT
00100000 50,395 1997-01-11 18:51:42 TEST3.TXT
----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

Note that these files have their archive attribute set.

The third parameter specifies what additional files to include along with the normal ones. The following shows allowable values for this parameter:

01 - include read only file entries
02 - include hidden file entries
04 - include system file entries
08 - include volume id entries
16 - include directories entries
32 - include archived file entries
63 - include all of the above

The fourth parameter is the number of files to limit the search to. If omitted or set to zero, all files are returned. Limiting the number of files returned is useful when recursively gathering files for processing when only a handful of files are to be processed each time the gathering takes place. Gathering 50,000 files in order to process a handful of them would be rather wasteful.

The remaining parameter “R” causes the subdirectories of the given directory to be recursed; that is, all subdirectories of the given one are included in the search for files matching the file template.

The following pipe example uses the FILES filter to create a batch file that prints all of the .C files in a directory:

T files *.c | T ins 1 'type ' | T append '#3eprn' >doit.bat

After executing the pipe, DOIT.BAT might contain the following:

type changeca.c >prn
type getdel.c >prn
type var.c >prn
type testfile.c >prn
type const.c >prn

�This next pipe recursively searches your C drive in search of any files whose name contains the string, “TIME”:

T files c:*.* 8 0 0 R | T incl 'TIME'

The following batch file locates and then executes the Microsoft Internet Explorer from drive C to access Firefly Software's website:

@echo off
T files c:\iexplore.exe 8 0 1 r >temp.txt
type temp.txt | T append ' http://www.fireflysoftware.com' >temp.txt
type temp.txt | T ins 1 '@echo off#0d#0a' >doit.bat
call doit.bat

FROMCRT

Syntax: FROMCRT <row> <col> <rows> <cols>

Like the FILES option, this one is also a text source. It outputs text to standard output like a filter, but it doesn't get the text from standard input like one. So where does the text come from? This option takes text right off of the CRT screen and sends it to standard output. The first two parameters specify the row and column of the upper left corner of a rectangular area of the screen and the remaining two parameters specify the rectangle's number of rows and number of columns.

HCRUN

Syntax: HCRUN

The HCRUN filter, (horizontal crunch) removes all extra blanks from each line. It replaces any number of consecutive blanks with a single blank. HCRUN has no effect on tab characters, and thus you should use the EXPAND filter before this one if you suspect that tabs are present.

INCL

Syntax: INCL <string> [<begin char pos> <end char pos>]

The INCL filter includes all lines in the output that contain the specified string. If the optional range of character positions is specified, then lines are included only if the string exists within that range. Specifying an empty string, (''), causes all lines to be included.
INLINE*

Syntax: INLINE <filename> [<arg string> ...]

The INLINE option causes the filter instructions, (the pipe), represented in the given text file to be executed in-line as though they comprise a single, elemental filter. Inline pipe files allow you to in-effect, create your own user-defined filters that can be used like elemental filters to create other pipes. They also allow you to replace slow, command line pipes with faster, more efficient inline equivalents. As inline pipes are executed apart from the command line, they are not restricted by speed limitations inherent in command line pipes such as having to load the executable, T.EXE, to process each and every filter. Also unlike pipes executed from the command line, no intermediate text files are created between filters in processing inline pipes.

An inline pipe’s only drawback is that the text source on which it operates must be capable of residing completely in memory during it’s execution. Theoretically, an inline pipe should be able to operate on text sources of approximately 400K in size and even this limitation should be short-lived, (see Appendix B, Limitations, Incompatibilities and Unwanted Features). Inline pipes can be referenced from the command line or from other inline pipes; however, circular references should be avoided. You cannot reference text source options, (such as the RULER or FILES options), or non-TEXTools filters such as SORT.EXE from within an inline pipe file.

TEXTools filters are referenced the same way in inline pipe files as they are on the command line; the only difference is that the TEXTools executable, (T.EXE) is never referenced. Blank lines and comments are allowed in inline pipe files for increased readability. To be interpreted as a comment, the first non-whitespace character of a line must be a semicolon character.

The following inline pipe file extracts a given file's directory and passes it to standard output:

; First, reverse the text to allow the vacuum
; filter to be used from the right side:

reverse

; Remove the file name, leaving it's directory:

vacuum 1 '\'

; now, reverse the text again:

reverse

; Remove the trailing backslash:

strip 1

The following pipe uses the inline pipe file shown above to create a ready-to-run batch file that sets the DOS environment variable, “DIR” to a given file's directory:

echo c:\dos\command.com | T inline c:\pipes\getdir.pip >temp.txt
type temp.txt | T ins 1 '@echo off#0d#0aset dir=' >doit.bat

If an inline pipe file is referenced without a file name extension, .PIP is assumed by default.

Multiple single quoted strings can be specified following an inline pipe file’s reference to act as replacements for their respective placeholders within the inline pipe file. The first of the strings will replace any references to “<1>”, the second will replace any references to “<2>” etc. The following batch file uses an inline pipe to draw a text box on-screen:

:: Process: DRAWBOX.BAT
::
:: This TEXTools enhanced batch file draws a text box.
::
::

if '%5' == '' goto HELP

echo . | T inline drawbox.pip '%1' '%2' '%3' '%4' '%5'
goto END

:HELP

echo Usage: DRAWBOX {Row} {Col} {Rows} {Cols} {Attr}

:END

It references the inline pipe file, drawbox.pip:

; This inline pipe draws a text box on-screen.

padr <3> '.'
repl '.' '#0d#0a'
padr <4> ' '
tocrt <1> <2> <5>

Note how a period, (.) is used as input to feed the inline pipe.

INS

Syntax: INS (<char pos> <string>) ...

The INS filter inserts a character string into each line at the specified character position. Multiple insertions into each line may be performed with a single invocation of TEXTools; although, the character position/string pairs must be given in ascending order, (see DEL filter above).

�JOIN LINES*

Syntax: JOIN LINES <# of lines>

The JOIN LINES filter combines the given number of lines of data together onto single lines. Given the following text in MYFILE.TXT,

JOHN L. DOE
42
MIAMI
FL
FRANK N. STEIN
20
LOS ANGELES
CA

the pipe,

type myfile.txt | T padr 15 ' ' | T join lines 4

results in:

JOHN L. DOE 42 MIAMI FL
FRANK N. STEIN 20 LOS ANGELES CA
----+----1----+----2----+----3----+----4----+----5

The JOIN LINES filter is also well suited to creating delimited text data files. Given the same data in MYFILE.TXT as before, the pipe,

type myfile.txt | T append ',' | T join lines 4 | T strip 1

gives us:

JOHN L. DOE,42,MIAMI,FL
FRANK N. STEIN,20,LOS ANGELES,CA
JANE DOE,13,HOUSTON,TX

Typically, the text being converted into delimited data records would normally be in the form of columns such as in reports; therefore it would be necessary to first transform the text data into a single column using the SPLIT filter. Now you can easily convert your data from that old software package to that new one!

The JOIN LINES filter can also be used to create multiple columns of text from a single column. For an example of this, see the COLORDER filter.

�JOIN TO

Syntax: JOIN TO <char pos>

The JOIN TO filter combines each line of data together until the given character position is reached. In effect, JOIN TO justifies the text, (in a rough manner), to fit within the given line length.

The following two examples will demonstrate this ability:

Example #1 - Given the file, MYFILE.TXT containing the text,

now is the time
for all good men to come to
the aid
of their country.
----+----1----+----2----+----3----+----4----+----5

Suppose we wanted to join the lines to a length of 20 characters. We could simply use the following pipe,

type myfile.txt | T append ' ' | T join to 20

to obtain the results:

now is the time for
all good men to
come to the aid of
their country.
----+----1----+----2----+----3----+----4----+----5

Joining the text to a length of 50 characters, using the pipe,

type myfile.txt | T append ' ' | T join to 50

produces this result:

now is the time for all good men to come to the
aid of their country.
----+----1----+----2----+----3----+----4----+----5

The APPEND filter is used here to keep the words from being combined together by the JOIN TO filter.

�Example #2 - It may be desired that the data be formatted into three columns. To do so, first each word must be put onto a separate line using the PARSE filter. We begin with the pipe:

type myfile.txt | T parse

The data now prints one word per line, starting in column 1:

now
is
the
time
for
all
...

Since we wish to join the words three per line, and the words are of differing lengths, it is necessary that each word, (each line actually), be made to appear the same length. To do this, we merely add a filter to our previous pipe:

type myfile.txt | T parse | T padr 10 ' '

The PADR filter in this example will add blanks to each line until they are each 10 characters long. Both the PARSE and PADR filters will be discussed in more detail later. We are now ready to use the JOIN TO filter to form three columns of data. Since each line is currently 10 characters long, they must be joined to a total of 30 characters in order to form 3 columns.

The following pipe,

type myfile.txt | T parse | T padr 10 ' ' | T join to 30

produces the desired output:

"now is the "
"time for all "
"good men to "
"come to the "
"aid of their "
"country "
----+----1----+----2----+----3----+----4----+----5

Remember, the double quotes are shown here only to point out the trailing blanks. Notice that the period after “country” has been discarded. This happened during execution of the PARSE filter. PARSE, as it is used here, considers only characters “A” to “Z” and “0” to “9” as valid “word material” to be returned.

�Had it been our intention to form say, 4 columns of data instead of 3, we could have specified a join to line width of 40 instead of the 30 used previously:

type myfile.txt | T parse | T padr 10 ' ' | T join to 40

This would have produced the following output:

"now is the time "
"for all good men "
"to come to the "
"aid of their country "
----+----1----+----2----+----3----+----4----+----5

So long as we specify a join width that is divisible by the current line width, (10 in this example), our output is guaranteed not to resemble a barber pole. If it is known that the lines of data being fed into JOIN TO are all of the same length, then the PADR filter becomes necessary only for adjusting the spacing between the output columns. Note that the JOIN LINES filter is better suited to the task of creating multiple columns of text than the JOIN TO filter is because it doesn't require that you calculate the line length to join to. See the COLORDER filter for a similar example using the JOIN LINES filter.

LEAD

Syntax: LEAD

The LEAD filter removes all leading blanks and tabs from each line.

LEFT

Syntax: LEFT <# of characters>

This filter returns the given number of characters from the beginning of each line of text.

LINENO

Syntax: LINENO [<initial line #> [<increment> [<char pos>]]]

The LINENO filter inserts a line number at the specified character position of each line. The first parameter is the initial line number, the second is the line number increment and the third is the character position at which the line numbers will be inserted into the line. Any parameter omitted defaults to 1.

�Given the list of names in MYFILE.TXT:

John
Susan
Paul
George
----+----1----+----2----+----3----+----4----+----5

The pipe,

type myfile.txt | lineno 10 10 1

results in:

 10 John
 20 Susan
 30 Paul
 40 George
----+----1----+----2----+----3----+----4----+----5

Given a list of work order numbers in MYFILE.TXT ordered chronologically:

374
232
516
121

If you wanted to reorder the list so that the most recent work order is at the top of the list, (in effect, reversing the list) you could use this pipe:

type myfile.txt | T lineno | SORT /r | T del 1 7

It's execution would result in the following output:

121
516
232
374

The only assumption here is that the environment variable, WIDTH is set to 6, (we had to delete 7 characters because the LINENO filter adds an extra blank to the right of the inserted number. The /r switch used with the SORT filter causes the list to be sorted in reverse order. The LINENO filter is affected by the WIDTH environment variable.

�LOWER

Syntax: LOWER [(<string> <string>) ...]

The LOWER filter converts uppercase characters to lowercase. Any number of string delimiter pairs can be specified after the filter to instruct TEXTools not to change case within such pairs of delimiters existing in the actual text being processed. If no pairs of string delimiters are specified, then all characters of each line are changed to lowercase. The first pipe,

type myfile.txt | T lower

will lowercase the entire file, whereas the second,

type test.pas | T lower '/*' '*/' '"' '"'

causes only the uppercase characters outside of comments and string literals to be lowercased. This feature is especially nice for programmers who are forced for one reason or another to conform to casing conventions set by others.

MUL

Syntax: MUL <ins char pos> <arg char pos> <arg char pos> [<arg char pos> ...]

The MUL filter multiplies two or more numbers in the source text and inserts the resulting value into each line at some given character position. The first parameter is where the resulting value of the multiplication will be inserted into the output text. If zero is specified, no insertion occurs; only the result of the multiplication is output. The remaining parameters specify at what locations the numbers to be multiplied are located and in each case, must point at the first digit of the number or at the whitespace just prior to it.

Given the four numbers stored in MYFILE.TXT:

3 2 4 10
----+----1----+----2----+----3----+----4----+----5

the pipe,

type myfile.txt | T mul 30 1 5 15 20

�will result in:

3 2 4 10 240.00
----+----1----+----2----+----3----+----4----+----5

The MUL filter is affected by the environment variables, WIDTH and DECIMALS.

NOBLANK	

Syntax: NOBLANK

The NOBLANK filter removes all blank lines from output. A blank line is considered to be one that contains no characters except a carriage return/linefeed pair. A line containing only blank characters is NOT considered a blank line! In order to remove lines containing only blank or tab characters, the TRAIL filter must be used to delete trailing blanks first.

Given the following contents of MYFILE.TXT, (double quotes added for clarity):

"There was as an Argentine Goucho named Bruno"
""
"who said there is something I do know..."

After executing the pipe,

type myfile.txt | T noblank >myfile.txt

it would contain the following two lines:

"There was as an Argentine Goucho named Bruno"
"who said there is something I do know..."

OVERLAY

Syntax: OVERLAY (<char pos> <string>) ...

The OVERLAY filter overlays each line at a character position with a character string. Multiple overlays may be performed with a single invocation of TEXTools.

�PADB*

Syntax: PADB <# of lines> <string>

The PADB filter, (pad bottom) appends lines containing the given string until the given number of lines is reached.

PADL*

Syntax: PADL <width> <string>

The PADL filter pads each line on the left to the given character width with the given character string.

PADR

Syntax: PADR <width> <string>

The PADR filter pads each line on the right to the given character width with the given character string.

PARSE

Syntax: PARSE [B]

The PARSE filter parses each single word onto a separate line using all non-alphanumeric characters as delimiters. Use of the B option causes only blanks to be considered as delimiters.

The pipe,

echo Help!... Time's a wastin! | T parse

will produce the following output:

Help
Time
s
a
wastin

�With the B option,

echo Help!... Time's a wastin! | T parse b

The output becomes:

Help!...
Time's
a
wastin!

 REFORM

Syntax: REFORM (<begin char pos> <end char pos>) ...

The REFORM filter re-arranges the column order of each line, allowing columns of data to be moved about, deleted or duplicated.

Suppose you had twenty or so files in a directory, each representing a test case for a particular project,

T03.TST
T04.TST
T02.TST
T09.TST
T05.TST
T01.TST

and you wanted to rename each of them, placing the characters “70”, (the “7” representing a class of test case and the zero to widen the sequence number to three characters), directly after the beginning character, “T” resulting in T7003.TST for the first file. At first, it might seem possible to use the DOS command,

rename T??.TST T70??.TST

or some other form of RENAME to accomplish this feat; however, the DOS RENAME command will not perform this complex of an operation. Of course, the solution lies in utilizing TEXTools. First, the FILES source filter could be used to get a list of the files:

T files T??.TST >doit.bat

This would result in the following list of files in DOIT.BAT:

T03.TST
T04.TST
T02.TST
T09.TST
T05.TST
T01.TST

By using the TEXTools REFORM filter,

type doit.bat | T reform 1 8 1 8 >doit.bat

we get two copies of each filename per line:

T03.TST T03.TST
T04.TST T04.TST
T02.TST T02.TST
T09.TST T09.TST
T05.TST T05.TST
T01.TST T01.TST

The following pipe,

type doit.bat | T ins 1 'RENAME ' 10 '70' >doit.bat

then results in a completed batch file containing the lines:

RENAME T03.TST T7003.TST
RENAME T04.TST T7004.TST
RENAME T02.TST T7002.TST
RENAME T09.TST T7009.TST
RENAME T05.TST T7005.TST
RENAME T01.TST T7001.TST

whose invocation will result in the renaming of each file.

REPL

Syntax: REPL (<old string> <new string>) ...

The REPL filter replaces each occurrence of a character string found within each line with a second character string. Multiple string replacements are allowed per invocation of TEXTools. Because it is possible to replace a character string with one containing carriage return/line feed pairs, lines can be inserted into a text file using the REPL filter. It is not possible however, to delete lines in this manner, since carriage return/line feed pairs cannot be found within source lines.

The following pipe,

echo @echo off^md ~1^move ~1.* ~1 >temp.txt
type temp.txt | T repl '^' '#0d#0a' '~' '#25' >doit.bat

�creates the ready-to-run batch file, DOIT.BAT:

@echo off
md %1
move %1.* %1

In this pipe, the character “^” is replaced by carriage return/line feed pairs and the tilde character, “~” is replaced by the percent character, “%”, represented by the hexadecimal ASCII combination, “#25”. “#25” is used to represent the percent character here so that the batch file argument, “%1” is not interpreted by DOS within the current batch file. The BREAK filter provides an alternate method of inserting carriage return/line feeds into text.

REVERSE*

Syntax: REVERSE

This filter horizontally reverse orders the characters on each line of the input text stream.

The pipe,

echo power is in filter combinations | T reverse

results in the text being translated to the native language of the people on the island of Reversia:

snoitanibmoc retlif ni si rewop

The REVERSE filter is useful as a pre-filter for other filters, allowing them to act on the text from the right side instead of from the left side.

Given the following text in MYFILE.TXT,

brake pads 12.50
brake drums 32.90
spark plug wires 06.75
radiator hose 05.49

suppose you wanted to insert a dollar sign, “$” ahead of the cost for each item. The INS filter alone can't help here because the character position of the cost varies from line to line. If the text was reversed horizontally however, the dollar sign could then be inserted at column 6 for each line. The following pipe does that and then reverses the text a second time to return it to it's initial state:

type MYFILE.TXT | T reverse | T ins 6 '$' | T reverse

�The output from its execution is:

brake pads $12.50
brake drums $32.90
spark plug wires $06.75
radiator hose $05.49

See the PIPE filter for an example where the REVERSE filter is used in extracting a filename's directory. See the LINENO filter for an example of how to reverse-order a list of items vertically.

RIGHT*

Syntax: RIGHT <# of chars>

This filter returns the given number of characters from the end of each line of text.

RULER

Syntax: RULER [<length>]

This option is a source filter that helps you to enter pipes at the DOS command line. It simply outputs a ruler to standard output and can be utilized while in the middle of entering a command line pipe, making it unnecessary to use a command line editor to switch between pipe construction and ruler display. The parameter specifies the length of the ruler in column positions. If omitted, it defaults to the setting of the environment variable RULER, or to 79 if RULER is not defined in the environment.

SHIFT*

Syntax: SHIFT (<char pos> <string>)...

The SHIFT filter allows you to shift text into a specific character position. You can use it to reform delimited text into tabular columns as the following example shows. It is also useful for forcing text into a specific column position so that subsequent filters can operate based on that assumption. The SHIFT filter will shift text either to the left or to the right as necessary. The first parameter is the character position to shift the text to and the second parameter specifies the string to be shifted. Any number of position/string pairs can be specified. Given the following input data in the file, MYFILE.TXT,

now,is,the,time
for,all,good,men
to,come,to,the
aid,of,their,country

the pipe,

type myfile.txt | T shift 10 ',' 20 ',' 30 ','

will output the following:

now ,is ,the ,time
for ,all ,good ,men
to ,come ,to ,the
aid ,of ,their ,country
----+----1----+----2----+----3----+----4----+----5----+----6

Note that the same string, (a comma in this case) can be specified repeatedly.

SPLIT

Syntax: SPLIT <char pos> ...

The SPLIT filter splits each line at the given character position(s).

Suppose for example that we wished to modify the following list of items contained in LIST.TXT

01 ONE, 02 TWO, 03 THREE,
04 FOUR, 05 FIVE, 06 SIX,
07 SEVEN, 08 EIGHT, 09 NINE,
10 TEN, 11 ELEVEN, 12 TWELVE,
13 THIRTEEN, 14 FOURTEEN, 15 FIFTEEN,
----+----1----+----2----+----3----+----4----+----5

so that they formed four columns instead of three. To do so, first we must use the SPLIT filter to place each number and corresponding comment onto a separate line:

type list.txt | T split 14 27

Notice that the SPLIT filter is used here much like PARSE was used during the example in the JOIN TO filter earlier.

We now have a single column of data:

01 ONE,
02 TWO,
03 THREE,
04 FOUR,
05 FIVE,
...
----+----1----+----2----+----3----+----4----+----5----+----6

Adding PADR and JOIN LINES filters, we get the pipe:

type list.txt | T split 14 27 | T padr 15 ' ' | T join lines 4

Its execution results in the desired four columns of data:

01 ONE, 02 TWO, 03 THREE, 04 FOUR,
05 FIVE, 06 SIX, 07 SEVEN, 08 EIGHT,
09 NINE, 10 TEN, 11 ELEVEN, 12 TWELVE,
13 THIRTEEN, 14 FOURTEEN, 15 FIFTEEN,
----+----1----+----2----+----3----+----4----+----5----+----6

Note that the split filter will not split a line at a point beyond the line's length.

STRIP	

Syntax: STRIP <# of chars>

The STRIP filter removes a given number of characters from the end of each line.

SUB*

Syntax: SUB <ins char pos> <arg char pos> <arg char pos>

The SUB filter subtracts two numbers in the source text and inserts the resulting value into the output text at some given character position. The first parameter is where you want the resulting value of the subtraction to be inserted into the output text. If zero is specified, only the result of the subtraction is output. The remaining two parameters specify at what column positions the numbers involved in the subtraction are located. The SUB filter is affected by the environment variables, WIDTH and DECIMALS. See the examples for the ADD and MUL filters.

TABS

Syntax: TABS <# of char cols>

The TABS filter expands tab characters. The value specified is the number of characters per tab used during tab expansion.

TOCRT

Syntax: TOCRT <row> <col> [<char attr>]

The TOCRT filter displays the input text at the screen location represented by the given row and column parameters. This filter is a terminal filter meaning that it passes no text to standard output; hence, the TOCRT filter is always the last filter in a pipe. The first two parameters specify the row and column on the screen where the text will be displayed. The third optional parameter is the character attribute that the text will be written with. If omitted, the character attribute for white is used.

Character attribute values are derived from an 8-bit value according to the following:

 Background Color Foreground Color
-------------------- ---------------------
Blink Red Green Blue Intens Red Green Blue
 x x x x x x x x

for example,

0 0 0 0 1 1 0 0 (value=12) represents intense red on black
1 0 0 1 0 1 0 0 (value=148) represents blinking red on blue

You can use the BASE2DEC filter to help convert the binary values to decimal. Note that when debugging output is being sent to the CON device, the TOCRT filter is automatically disabled from sending output to the CRT. The TOCRT filter does not function properly under the Windows NT operating system. See Appendix B, Limitations, Incompatibilities and Unwanted Features.

TOP

Syntax: TOP <# of lines>

The TOP filter passes the given number of lines from the beginning of the input text. It can be used in conjunction with the BOTTOM filter to return a range of lines from the middle of the input text. See the BOTTOM filter for an example of this.

TOTAL*

Syntax: TOTAL <char pos> [<char pos> ...]

For EACH character position specified, the TOTAL filter totals the numeric values found on all input lines at that character position. A specified character position does not have to point directly at a value's first digit, but can point to the whitespace ahead of the value as well. The output from the TOTAL filter is a single line of source that contains the totals of all columns specified. The totals are written to this output line at the character columns specified.

�Given the following in MYFILE.TXT:

john 20 12.2
fred 52 6.4
lisa 8 19.0
thomas 20 103.5
tom 36 72.8
----+----1----+----2----+----3----+----4----+----5----+----6

the pipe,

type myfile.txt | T total 8 18

returns:

 136.00 213.90
----+----1----+----2----+----3----+----4----+----5----+----6

To create reports that total both horizontally and vertically, you can use the TOTAL filter in conjunction with the ADD filter. This could be done for the above example as follows:

type myfile.txt | T add 30 8 18 >report.txt
type report.txt | T total 8 18 30 >>report.txt

Afterwards, REPORT.TXT should contain:

john 20 12.2 32.20
fred 52 6.4 58.40
lisa 8 19.0 27.00
thomas 20 103.5 123.50
tom 36 72.8 108.80
 136.00 213.90 349.90
----+----1----+----2----+----3----+----4----+----5----+----6

Note how the text from REPORT.TXT is passed through the TOTAL filter and the resulting text is appended back to REPORT.TXT!

If you are working at the DOS command line and need to add up some numbers quickly, type:

T total 1

In this instance, instead of obtaining its text data from a file, TEXTools expects you to provide it via the keyboard. Just type in a sequence of numbers separated by carriage returns. When you've typed them all in, press a CTRL-Z. The CTRL-Z character tells TEXTools that it has reached the end-of-file. TEXTools will then display your requested total on screen. The TOTAL filter is affected by the environment variables, WIDTH and DECIMALS.

TRAIL	

Syntax: TRAIL

The TRAIL filter removes all trailing blanks and tabs from each line.

TRUNC

Syntax: TRUNC <char pos>

The TRUNC filter truncates each line at the given character position.

UNIQUE

Syntax: UNIQUE [<beg char pos> <end char pos>]

The UNIQUE filter acts on sorted lists, removing all duplicate lines. You can specify a range of character positions upon which duplication of lines is determined instead of it being determined based on the contents of the entire line. In order for the UNIQUE filter to work, uniqueness must be specified to correspond to the columns that the input text is sorted on. See the DUPL filter for an example use of the UNIQUE filter.

 UPPER

Syntax: UPPER [<beg char pos> <end char pos> ...]

The UPPER filter converts lowercase characters to uppercase. Any number of string delimiter pairs can be specified after the filter to instruct TEXTools not to change case within such pairs of delimiters existing in the actual text being processed. If no pairs of string delimiters are specified, then all characters of each line are changed to uppercase. The first example,

type myfile.txt | T upper

will uppercase the entire file, whereas the second,

type test.c | T upper '/*' '*/' '"' '"'

causes only the lowercase characters outside of comments and string literals to be uppercased. This feature is especially nice for programmers who are forced for one reason or another to conform to casing conventions set by others.

VACUUM

Syntax: VACUUM <char pos> <string>

The VACUUM filter deletes all characters from the given character position up to the character string given. If the given character string does not exist to the right of the character position, on a particular line, then no modification is made to that line.

Given the following text in MYFILE.TXT,

The carpet is not clean
----+----1----+----2----+----3----+----4----+----5----+----6

execution of the pipe,

type myfile.txt | T vacuum 15 'cle'

results in

The carpet is clean
----+----1----+----2----+----3----+----4----+----5----+----6

VCRUN

Syntax: VCRUN

The VCRUN filter, (vertical crunch) removes extra blank lines. It replaces any number of consecutive blank lines with a single blank line. Note that to be considered blank, a line must contain absolutely no characters, not even blanks or tab characters; therefore, it may be necessary to remove trailing blanks and tabs from all lines, (using the TRAIL filter) before the VCRUN filter is used.
�Appendix A��The ASCII Character Set

In the chart below, the hexadecimal ASCII value of a character is found by adding the character’s row value, on the left, to it’s column value given at the top. For example the ASCII value for an asterisk, “*” is 20 + A or 2A.

 0 1 2 3 4 5 6 7 8 9 A B C D E F
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

00 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI
10 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
20 ! " # $ % & ' () * + , - . /
30 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
40 @ A B C D E F G H I J K L M N O
50 P Q R S T U V W X Y Z [\] ^ _
60 ` a b c d e f g h i j k l m n o
70 p q r s t u v w x y z { | } ~ DEL

� Appendix B��Limitations, Incompatibilities and Unwanted Features

Under Windows 95, referencing of a double quote (") in a TEXTools string causes the program's reference to the DOS command line to be corrupted. The problem sometimes presents itself as though a single quote is missing from a string parameter but often it causes the DOS session to completely abort.

Workaround: If you must reference double quotes in TEXTools strings while running under Windows 95, use their hexadecimal ASCII representation, “#22” instead of referencing them directly.

Under Windows NT, the technique of editing a text file by piping it through a set of DOS filters and back again to the original text file leads to the file being truncated. For example, the following pipe causes MYFILE.TXT to be truncated when run under Windows NT:

type myfile.txt | T repl 'this' 'that' >myfile.txt

This is apparently a limitation of piping under the Windows NT operating system.

Workaround: Use the following alternative format in place of that used above:

type myfile.txt | T repl 'this' 'that' >temp.txt
type temp.txt >myfile.txt

Under Windows NT, the TOCRT filter does not work properly. Although it appears to work at times, the underlying DOS process is pretty much guaranteed to lock up eventually. NT's more strict approach to allowing access to hardware apparently renders this filter non-functional. This is mostly considered a limitation brought about by the current TEXTools development platform.

Workaround: This limitation will go away in the next major release of TEXTools.

Each line of text processed by TEXTools is limited to 255 characters.

Workaround: This limitation will go away in the next major release of TEXTools.�

When processing inline pipes, TEXTools is currently limited to processing text sources that are approximately 400K in size.

Workaround: This limitation will go away in the next major release of TEXTools. If you require processing of text sources larger than 400K, simply refrain from using inline pipes as the above stated limitation only applies to their use. TextTools has no such limitation when executing pipes directly from the command-line, (interactively or from batch files).

Long file names are currently not supported.

Workaround: This limitation will go away in the next major release of TEXTools.
� Appendix C��Optimizing the Performance of TEXTools

Large batch file processes built around TEXTools, (such as the SQL importer I created for work) are inherently I/O bound unless something is done to improve performance. Following are some things that you can do to speed things up a bit:

If possible, run your process from a RAMDISK, (a harddrive emulated using memory). Although this may only be an option when running under native or real DOS, (Microsoft removed the RAMDRIVE option from both Windows 95 and Windows NT), the performance improvement is astounding. If you are interested in doing this, the following is an example of loading the RAMDRIVE.SYS from the CONFIG.SYS under MS-DOS 6.2:

device = c:\dos\ramdrive.sys 2048 512 1024 /e

It's my understanding that a 3rd party RAMDISK device driver is available on CompuServe for Windows NT. It is in the Win NT Utils/Apps section (14) of the Windows Shareware Forum (Go Winshare) on CompuServe. The file name is RAMDIS.ZIP. I have not used this product and do not know whether it will function using Windows 95 or not.

If use of a RAMDISK is not possible, at least run large processes built around TEXTools from local drives instead of from network drives.

Replace all command line pipes of three or more filters with inline pipes. The larger the pipe, the more significant is the performance improvement.
� Appendix D��Environment Variables

Following is a list of all of the environment variables supported by TEXTools.

COMMAS=(ON/OFF)

This variable allows you to turn off the displaying of commas in the SIZE field of the FILES filter output. The default setting is ON.

WIDTH=(1 - n)

This variable allows you to configure the width of numeric fields. The default setting is 6.

DECIMALS=(1 - n)

This variable allows you to configure the number of decimals displayed in numeric fields.

RULER=(1 - 255)

This variable allows you to set the ruler length. The default setting is 79.

DEBUG=(ON/OFF)

This variable is used to enable/disable debugging mode. The default is OFF.

DEBUGDEV=(CON/<file name>/<print device>)

This variable allows you to specify where the debugging output will be sent. The default is CON, which is the system output device or console. You can specify a file name and the debugging output will be written to that file. Although print devices, (like LPT1) can be specified, the result is not desirable when debugging command line pipes as the output from each filter is printed on a separate page due to the way TEXTools executes one filter at a time from the command line. To get around this, you can set the debug device to a file name. If the file already exists, TEXTools will append output to the file. You can then send the file to the printer. Another approach is to convert the command line pipe to run in-memory by placing it inside an inline pipe file and referencing it using the INLINE option. Output resulting from debugging in-memory pipes will print as expected without wasting a lot of paper. Note that when DEBUGDEV is set to CON, the TOCRT filter is automatically disabled from sending output to the console also.

STEP=(ON/OFF)

This variable enables single step mode. When DEBUGDEV is set to “CON”, output is automatically paused between filters until you press a key to proceed to the next step. The default is OFF.

TEXTools 1.0		Copyright (1997 Firefly Software

	

		

	

TEXTools 1.0		Copyright (1997 Firefly Software

�PAGE �

TEXTools 1.0		Copyright (1997 Firefly Software

	� PAGE �i�

TEXTools 1.0		Copyright (1997 Firefly Software

�PAGE �ii�

TEXTools 1.0		Copyright (1997 Firefly Software		

�PAGE �50�

TEXTools 1.0		Copyright (1997 Firefly Software		

	

