PED4DOS

Programmable Editor�with extended facilities�for searching and replacing��for batch processing with MS-DOS
version 1.40 December 1995
Copyright 1995 Software-Quelle GmbH

Software-Quelle Datentechnik GmbH
Erfurter Strasse 15
D-85386 Eching
Germany

Telefax: +49 89 327133 36
Compuserve: 100034,2365
Internet: 100034.2365@compuserve.com
�� VERZEICHNIS \o "1-5" �
1 Introduction	� GEHEZU _Toc343914197 � SEITENREF _Toc343914197 �4��
2 Command-line syntax	� GEHEZU _Toc343914198 � SEITENREF _Toc343914198 �5��
3 Operating PED4DOS at run time	� GEHEZU _Toc343914199 � SEITENREF _Toc343914199 �8��
3.1 Find a matching string	� GEHEZU _Toc343914200 � SEITENREF _Toc343914200 �8��
3.2 Replace a string	� GEHEZU _Toc343914201 � SEITENREF _Toc343914201 �8��
3.3 Show statistical information	� GEHEZU _Toc343914202 � SEITENREF _Toc343914202 �9��
3.4 Write changes to the current file	� GEHEZU _Toc343914203 � SEITENREF _Toc343914203 �9��
3.5 View data at search position	� GEHEZU _Toc343914204 � SEITENREF _Toc343914204 �10��
3.6 Change perform options	� GEHEZU _Toc343914205 � SEITENREF _Toc343914205 �11��
3.7 Trace menu	� GEHEZU _Toc343914206 � SEITENREF _Toc343914206 �12��
4 Editing facilities	� GEHEZU _Toc343914207 � SEITENREF _Toc343914207 �14��
4.1 Introduction	� GEHEZU _Toc343914208 � SEITENREF _Toc343914208 �14��
4.1.1 Search and replace	� GEHEZU _Toc343914209 � SEITENREF _Toc343914209 �14��
4.1.1.1 Simple search	� GEHEZU _Toc343914210 � SEITENREF _Toc343914210 �14��
4.1.1.2 Search multiple different strings	� GEHEZU _Toc343914211 � SEITENREF _Toc343914211 �14��
4.1.1.3 Search for words, search case sensitive	� GEHEZU _Toc343914212 � SEITENREF _Toc343914212 �14��
4.1.1.4 Simple search and replace	� GEHEZU _Toc343914213 � SEITENREF _Toc343914213 �15��
4.1.1.5 Search pattern	� GEHEZU _Toc343914214 � SEITENREF _Toc343914214 �15��
4.1.1.6 Hexadecimal characters	� GEHEZU _Toc343914215 � SEITENREF _Toc343914215 �15��
4.1.1.7 Search for unknown character strings	� GEHEZU _Toc343914216 � SEITENREF _Toc343914216 �16��
4.1.1.8 Replacing pattern	� GEHEZU _Toc343914217 � SEITENREF _Toc343914217 �17��
4.1.1.9 Search Region	� GEHEZU _Toc343914218 � SEITENREF _Toc343914218 �17��
4.1.2 Jump statements and labels	� GEHEZU _Toc343914219 � SEITENREF _Toc343914219 �18��
4.1.3 Variables	� GEHEZU _Toc343914220 � SEITENREF _Toc343914220 �19��
4.1.3.1 String variables	� GEHEZU _Toc343914221 � SEITENREF _Toc343914221 �19��
4.1.3.1.1 Implicit assignment to string variables	� GEHEZU _Toc343914222 � SEITENREF _Toc343914222 �19��
4.1.3.1.2 Use string variables	� GEHEZU _Toc343914223 � SEITENREF _Toc343914223 �20��
4.1.3.1.3 Explicit assignment to string variables	� GEHEZU _Toc343914224 � SEITENREF _Toc343914224 �20��
4.1.3.1.4 Compare string variables	� GEHEZU _Toc343914225 � SEITENREF _Toc343914225 �22��
4.1.3.2 Numerical variables	� GEHEZU _Toc343914226 � SEITENREF _Toc343914226 �22��
4.1.3.2.1 Implicit assignment to numerical variables	� GEHEZU _Toc343914227 � SEITENREF _Toc343914227 �22��
4.1.3.2.2 Use numerical variables	� GEHEZU _Toc343914228 � SEITENREF _Toc343914228 �23��
4.1.3.2.3 Explicit assignment to numerical variables	� GEHEZU _Toc343914229 � SEITENREF _Toc343914229 �23��
4.1.3.2.4 Compare numerical variables	� GEHEZU _Toc343914230 � SEITENREF _Toc343914230 �24��
4.1.3.3 Functions	� GEHEZU _Toc343914231 � SEITENREF _Toc343914231 �24��
4.1.3.3.1 String functions	� GEHEZU _Toc343914232 � SEITENREF _Toc343914232 �24��
4.1.3.3.2 Numerical Functions	� GEHEZU _Toc343914233 � SEITENREF _Toc343914233 �25��
4.2 Syntax summary	� GEHEZU _Toc343914234 � SEITENREF _Toc343914234 �27��
4.2.1 Executing a search program	� GEHEZU _Toc343914235 � SEITENREF _Toc343914235 �27��
4.2.2 Syntax description	� GEHEZU _Toc343914236 � SEITENREF _Toc343914236 �28��
4.2.2.1 Definitions	� GEHEZU _Toc343914237 � SEITENREF _Toc343914237 �28��
4.2.2.2 Conventions	� GEHEZU _Toc343914238 � SEITENREF _Toc343914238 �28��
4.2.2.3 Syntax part 1	� GEHEZU _Toc343914239 � SEITENREF _Toc343914239 �29��
4.2.2.4 Syntax part 2	� GEHEZU _Toc343914240 � SEITENREF _Toc343914240 �30��
5 Examples	� GEHEZU _Toc343914241 � SEITENREF _Toc343914241 �34��
5.1 Check the FILES parameter in CONFIG.SYS	� GEHEZU _Toc343914242 � SEITENREF _Toc343914242 �34��
5.2 Convert special letters from ANSI to OEM or ASCII	� GEHEZU _Toc343914243 � SEITENREF _Toc343914243 �34��
5.3 Format a list file as input for a spreadsheet program	� GEHEZU _Toc343914244 � SEITENREF _Toc343914244 �35��
6 Contents of the PED4DOS software package	� GEHEZU _Toc343914245 � SEITENREF _Toc343914245 �39��
6.1 Executable Files	� GEHEZU _Toc343914246 � SEITENREF _Toc343914246 �39��
6.2 Samples	� GEHEZU _Toc343914247 � SEITENREF _Toc343914247 �39��
6.3 Documentation	� GEHEZU _Toc343914248 � SEITENREF _Toc343914248 �40��
�
Introduction
PED4DOS is designed for searching and replacing complex character strings in ASCII text or binary files according to a search program with a minimum of interaction with the user; it is not a "full screen text editor".
PED4DOS enables you to extract data from any file that is built according to a known syntax and write it to another file, or modify the data within the original file.
Here is a short survey of the outstanding facilities:
*	search (and replace) multiple character strings within a single pass through the file
*	search (and replace) unknown character strings, that match a given pattern
*	store the matching strings to string variables for later use
*	replace character strings by the content of string variables
*	search complex character strings, that match a pattern consisting of simple character strings and/or string variables and/or unknown character strings; replace by complex character strings, that consist of simple character strings and/or string variables and/or parts of the matching string
*	move the search position within the file
*	modify the contents of string variables by use of functions
*	output character strings to the screen
*	copy any or part of the output to a log file

Please execute the accompanying command file DEMO.BAT file if you want to see how PED4DOS works.

Document conventions:
The following conventions are used throughout this manual to define syntax:
Bold text	Denotes a term to be typed literally, such as a command or a command line option. You must type a term exactly as shown (but letters are not case sensitive)
Italic text	Denotes a placeholder or variable: You must provide the actual value. If surrounded with < and > characters, denotes a syntactical symbol (see the syntax description in chapter � REF _Ref341754168 \n �4.2�)
monospace	This font is used for examples and program output
[]	Enclose optional parameters
|	Separates alternatives
{}	Enclose alternative parameters: You must provide exactly one of these parameters
...	Specifies that the preceding item may be repeated
CAPITALS	Denotes keys of the keyboard, filenames

Command-line syntax
The following line shows PED4DOS command-line syntax:
P4D input-file [search-program] [options]
input-file(s)	Replace input-file by the fully or partially qualified name of the file to be edited; if input-file contains wildcard characters, all corresponding files will be edited.
search-program	Replace search-program by the <statements> of a <search program>; a <search program> describes what PED4DOS shall do. (The syntax of a <search program> is described in chapter � REF _Ref341754168 \n �4.2�; an introduction is contained in chapter � REF _Ref341754927 \n �4.1�). Search-program must be passed as a single parameter to PED4DOS (i.e. if search-program contains white spaces, it must be surrounded with delimiting characters such as " or ` , and search-program itself must not contain the delimiting character).
	Note: Some command interpreters handle the delimiting characters in their own way; see the description of your command interpreter.
	If the <search program> consists of multiple statements, it is recommended to write the <search program> to a file and use the option /f (see below)
options	PED4DOS accepts the following command-line options:
/c:command-file	Replace command-file with the name of an ASCII text file, that contains further command-line options. This is useful, if the length of the command-line exceeds the limits of the command interpreter (e.g. COMMAND.COM).
/f:prog-file	Replace prog-file with the name of an ASCII text file, that contains the <search program>. The <search program> must not be surrounded with delimiting characters.
	If PED4DOS cannot find prog-file within the current working directory, it will search for prog-file within the following directories:
1.	the directory where the executable file P4D.EXE resides
2.	the directories that are contained in the PATH environment variable
/l:log-file	Replace log-file with the name of an ASCII text file, that PED4DOS will create at startup time; all program output will be copied to log-file unless inhibited by the /p option (see below).
/p:[+|-]p[e..][:..]	(perform modes): while editing the <current file>, PED4DOS will start a dialog with you whenever one of the following events occurs:
1)	PED4DOS finds a <character string> that matches a <search pattern>
2)	PED4DOS finds a <character string> that shall be replaced by a <replacing string>
3)	PED4DOS has edited a file, that contains at least 1 <matching string>; PED4DOS would like to display statistics of the <matching strings> (and the <replaced strings> if any).
4)	PED4DOS has edited a file and replaced at least one <matching string> by a <replacing string>; PED4DOS would like to write the changes to <current file> (or to another file at your request)
5)	PED4DOS executes a <statement> that requires to display a <character string> on the screen
	Use the /p option to change the behavior of PED4DOS in the above events; the string /p: may be followed by one or more option strings, separated by colons; each option string consists of up to 3 parts:
1)	A + or - character activates or deactivates the perform mode p for the event e, respectively; the + character may be omitted.
2)	Replace the perform mode p by one of the following letters:
c	(confirm) : if activated, every event e must be confirmed
s	(show) : if activated, the message according to event e will be displayed on the screen
d	(dialog) : combination of c and s
l	(logging) : if activated, the message according to event e will be copied to log-file (see also the option /l)
b	(batch mode): same as -c:-s; deactivates any show and confirm mode
3)	Replace the event e by one or more of the following letters; if omitted, it defaults to a(all):
m	(match): a <matching string> has been found in the <current file>
r	(replace): a <matching string> shall be replaced by a <replacing string>
s	(statistics): at least 1 <matching string> was found in the <current file>
w	(write): at least 1 < matching string> has been replaced
o	(output): a <statement> requires to display a <character string>.
a	(all): all of the above events; default, if no event letter has been typed
	examples:
/p:-cms	no confirmation for matching strings and statistical information
/p:-dms	no output, no confirmation for matching strings and statistical information
/p:b	no display, no confirmation during batch processing (same as /p:-sa:-ca)
/p:-l:+lo	write only the output of display <statements> to the logging file
/s[:n]	PED4DOS will search subdirectories up to a level of n to find files corresponding to input-file.
/b:ext	If the option /bn (see below) is omitted, every modified file will be copied to a backup file with the filename extension ext before being updated. If this option is omitted, ext defaults to BAK
/bn	The modified files will not be saved in backup files before being updated (no backup)
/help	PED4DOS will display a short description of the options on the screen and ignore all other parameters (i.e. will not edit any file)
/nologo	PED4DOS will not display the startup message
/trace[:n]	Set the trace mode for the <search program>. The optional parameter n denotes the number of <statements> that shall be executed without interruption; if omitted, n defaults to 1 (see chapter � REF _Ref340889483 \n �3.7�)

Example:
The following command will search SPACES in the files DEMO*.IN, display only statistical messages (i.e. number of SPACE characters within the files) and write only statistical messages to the log file DEMO.LOG:
p4d demo*.in " ' ' " /l:demo.log /a:-d:+ds:-l:+ls
See the file DEMO.BAT for further examples.
Operating PED4DOS at run time
The following chapters describe the dialog between PED4DOS and you at run time:
Find a matching string
Whenever PED4DOS finds a <character string>, that matches a <search pattern> defined in the <search program>, it displays a message like the following:
file:input.txt, line: 22, offset: 0x337 = 823
followed by the <matching string> and a predefined quantity of characters surrounding the <matching string>,
followed by the menu line:
continue? (yes / all / skip file / view .. / perform options .. / quit)
Press one of the following keys so PED4DOS will act according to the description:
y	continue executing the <search program> (i.e. execute the next <statement>)
a	continue executing the <search program>, but only count <matching strings> (i.e. no display, no confirmation)
s	discontinue editing the <current file>; if any changes have been made before, PED4DOS will attempt to write the changes to the file (see chapter � REF _Ref340847533 \n �3.4�)
v	show the "view" menu (see chapter � REF _Ref340847283 \n �3.5�) that enables you to view the data at the current <search position>
p	show the "perform options" menu (see chapter � REF _Ref340847392 \n �3.6�) that enables you to change perform options
q	discontinue editing the <current file> and any further files; if any changes have been made before, PED4DOS will attempt to write the changes to the file (see chapter � REF _Ref340847533 \n �3.4�)

Replace a string
Whenever PED4DOS finds a <character string>, that matches a <search pattern> defined in the <search program> and shall be replaced by another <character string>, it displays a message like the following:
file:input.txt, line: 22, offset: 0x337 = 823
followed by the <matching string> and a predefined quantity of surrounding characters,
followed by a line like the following:
replace by:
followed by the <replacing string> and a predefined quantity of surrounding characters,
followed by the menu line:
ok? (yes / no / all / skip file / view .. / perform options .. / quit)
Press one of the following keys so PED4DOS will act according to the description:
y	replace the <matching string> by the <replacing string>; continue executing the <search program> (i.e. execute the next <statement>)
n	continue executing the <search program> without replacing the <matching string>
a	replace the <matching string> by the <replacing string>; continue executing the <search program> and perform all further replacements without display and confirmation
s	do not replace the <matching string>; discontinue editing the <current file>; if any changes have been made before, PED4DOS will attempt to write the changes to the file (see chapter � REF _Ref340847533 \n �3.4�)
v	show the "view" menu (see chapter � REF _Ref340847283 \n �3.5�) that enables you to view the data at the current <search position>
p	show the "perform options" menu (see chapter � REF _Ref340847392 \n �3.6�) that enables you to change perform options
q	do not replace the matching string; discontinue editing the <current file> and any further files; if any changes have been made before, PED4DOS will attempt to write the changes to the file (see chapter � REF _Ref340847533 \n �3.4�)

Show statistical information
If PED4DOS found any matches in the <current file>, it displays a message like the following:
file:input.txt, found 9 match(es), 2 replaced, 4 not replaced
followed by the menu line:
continue? (yes / perform options .. / quit)
Press one of the following keys so PED4DOS will act according to the description:
y	continue
p	show the "perform options" menu (see chapter � REF _Ref340847392 \n �3.6�) that enables you to change perform options
q	discontinue editing any further files; if any changes have been made to the <current file> before, PED4DOS will attempt to write the changes to the file (see chapter � REF _Ref340847533 \n �3.4�)

Write changes to the current file
If PED4DOS has replaced any <character string> in the <current file>, it will attempt to write the changes to the file after terminating the <search program>; PED4DOS will display a message like the following:
write changes to file input.txt ?
followed by the menu line:
ok? (yes / no / save as / perform options .. / quit)
Press one of the following keys so PED4DOS will act according to the description:
y	write the changes to the <current file>
n	ignore the changes; leave the <current file> unchanged
s	show a message like the following:
	save as: input.txt
	you should overwrite the old filename with the new filename, then press the ENTER key, or press the ESC key to cancel
p	show the "perform options" menu (see chapter � REF _Ref340847392 \n �3.6�) that enables you to change perform options
q	ignore the changes; leave the <current file> unchanged; discontinue editing any further files

View data at search position
If you selected the view option from one of the above menus (see chapters � REF _Ref340888634 \n �3.1� and � REF _Ref340888663 \n �3.2�), PED4DOS will display the menu line:
view <nnn / >nnn / hex / ascii / data / trace / ESC
Press one of the following keys or type one of the strings replacing nnn by a number less than 1000 so PED4DOS will act according to the description:
<nnn	subsequently display a maximum of nnn characters preceding the <matching string>
>nnn	subsequently display a maximum of nnn characters trailing the <matching string>
x	subsequently show the data in hexadecimal mode
a	subsequently show the data in ASCII mode
d	display the <matching string> (and the <replacing string>) again
t	after completion of the current dialog, enter the trace mode (i.e. interrupt before the next <statement> of the <search program> will be executed)
ESC	exit from the "view" menu

If you selected the view option from the "trace" menu (see below, chapter � REF _Ref340889483 \n �3.7�), PED4DOS will display an extended "view" menu:
view <nnn / >nnn / hex / ascii / data / var / hit flag / ESC
Here is the description of the additional options:
v	display the content of a <variable> (see chapter � REF _Ref342888087 \n �4.1.3�); PED4DOS will display the line
	view varname:
	you should type the name of a valid (i.e. used within the <search program>) <variable>, then press the ENTER key, or press the ESC key to cancel.
	If you typed the name of a valid <variable>, PED4DOS will display the content of that <variable>, otherwise display an error message
h	display the current setting of the <hit flag> that indicates whether the most recently executed <search statement> found a <matching string> (see chapter � REF _Ref343585534 \n �4.2.1�)

Change perform options
If you selected perform options from one of the above menus (see chapters � REF _Ref340888634 \n �3.1� and � REF _Ref340847533 \n �3.4�), PED4DOS displays the menu line:
set (+) / reset (-) perform options .. / batch mode .. / ok / cancel
Press one of the following keys so PED4DOS will act according to the description:
+	display the menu:
	set perform options for this file .. / all files .. / ESC
	Press one of the following keys so PED4DOS will act according to the description:
t	set perform options for editing the <current file>
a	set perform options for all input files
ESC	exit from this menu
	If you pressed one of the letter keys, PED4DOS displays a menu of the perform modes that are currently not set:
	set confirm/show/dialog/execute/log/all modes for .. / ESC
	Press one of the following keys so PED4DOS will act according to the description:
c	set confirm mode for the events selected from the following menu
s	set show mode for the events selected from the following menu
d	set dialog (show and confirm) mode for the events selected from the following menu
e	set execute mode for the events selected from the following menu
l	set logging mode for the events selected from the following menu
a	set all above modes
ESC	exit from this menu
	If you pressed one of the letter keys, PED4DOS displays a menu of the available (i.e. currently not set) events for the selected perform mode, for example:
	set show mode for match/replace/write/statistic/output/all / ESC
	Press one of the following keys so PED4DOS will subsequently display:
m	<matching strings> + surrounding characters
r	<matching strings> + <replacing strings> + surrounding characters
w	messages when writing changes to the <current file>
s	messages containing statistical information
o	output from display <statements> within the <search program>
a	all of the above options
ESC	exit from this menu
-	opposite to + (see above); reset (instead of set) the selected option(s)
b	display the "batch" menu, that enables you to enter the batch mode (no display, no confirmation)
	edit this file / all files in batch mode (no display, no confirm) / ESC
	Press one of the following keys so PED4DOS will act according to the description:
t	exit from the "perform options" menu; edit the <current file> in batch mode
a	exit from the "perform options" menu; edit all input files in batch mode
ESC	exit from the "batch" menu
o	accept the modified perform options and return to the previous menu
c	ignore the modified perform options and return to the previous menu
Example:
If you don't want to confirm <matching strings> and statistical messages, select the menu options in the following order (the example shows the menu line, then describes your input):
set (+) / reset (-) perform options .. / batch mode .. / ok / cancel
-	you want to reset options
reset perform options for this file .. / all files .. / ESC
a	you want to reset options for all input files
reset perform options for all files ...
reset confirm/show/dialog/execute/log/all modes for .. / ESC
c	you want to reset confirm mode
reset confirm mode for match/replace/write/statistic/all / ESC
m	you don't want to confirm <matching strings>
reset confirm mode for replace/write/statistic/all / ESC
s	you don't want to confirm statistical messages
reset confirm mode for replace/write/all / ESC
ESC	exit from this menu
reset confirm/show/dialog/execute/log/all modes for .. / ESC
ESC	exit from this menu
set (+) / reset (-) perform options .. / batch mode .. / ok / cancel
o	accept the modified perform options and return to the previous menu

This corresponds to the command-line option /p:-cms .
Trace menu
The "trace mode" enables you to step through the <search program> <statement> by <statement>, and view the currently edited data and the used <variables>.
While PED4DOS is editing an input file, you may enter the "trace mode" by pressing any key; alternatively you may start PED4DOS in "trace mode" using the command-line option /trace . PED4DOS will interrupt execution of the <search program> and display the next <statement> like the following:
INTERRUPT
'old string'='new string';
trace cmd: trace / go / set .. / view .. / perform options .. / quit
Press one of the following keys so PED4DOS will act according to the description:
t	trace (display and execute) a previously defined (see set option) number of <statements>, then interrupt again
g	leave trace mode and execute further <statements> without interruption
s	display the following menu:
	set trace steps / set breakpoint / remove breakpoint / ESC
	Press one of the following keys so PED4DOS will act according to the description:
t	display the line:
	trace nnn steps / ESC
	You should type the number of <statements> to execute without interruption, followed by the ENTER key, or press the ESC key to cancel
b	display the line:
	set breakpoint at label (. = current statement) / ESC
	You should type the label of the <statement> where PED4DOS should interrupt execution of the <search program> (or a decimal point denoting the current <statement>), followed by the ENTER key; PED4DOS will then interrupt every time before executing that <statement>.
	Press the ESC key to exit from this menu
r	display the line:
	remove breakpoint at label (. = current statement) / ESC
	You should type the label of the <statement> where you previously set a breakpoint, followed by the ENTER key; PED4DOS will no longer interrupt before executing that <statement>.
	Press the ESC key to exit from this menu
p	display the "perform options" menu (see chapter � REF _Ref340847392 \n �3.6�)
q	discontinue editing the <current file> and any further files

Editing facilities
Introduction
PED4DOS needs a <search program> to do its job. A <search program> consists of one (or more) <statements>, separated by ; characters. As a progressive introduction, here are some examples, that you can find in the demonstration file DEMO.BAT, too. The complete syntax of a <search program> is described in chapter � REF _Ref341754168 \n �4.2�.
Search and replace
Simple search
The most simple <search statement> consists of a <character string>, that PED4DOS shall search in the <current file>; a <character string> is a sequence of <characters>, surrounded with apostrophe characters '. PED4DOS will search the <character string> in the <current file>. Whenever PED4DOS finds a <matching string>, it displays an appropriate message containing the <search position> within the <current file>, and the <matching string>, then waits for your confirmation. After searching the whole file, PED4DOS displays a statistical message, if at least one <matching string> was found.
Example � SEQ Example * ARABISCH �1�:	search for an abbreviation:
'P4D'

Search multiple different strings
PED4DOS can search for multiple different <character strings> during a single pass through the file; simply separate the different <character strings> by ; characters.
Example � SEQ Example * ARABISCH �2�:	search for several abbreviations in a single pass:
'P4D'; 'SQ'; 'e.g.'

Note:	You may separate the different <statements> of a <search program> by SPACE and TAB characters and by comments (a comment starts with a double-slash sequence (//) and ends at the end of the line)
	If you use the /f option (read the search program from a file), you may separate the <statements> by NEWLINE characters, too.
	You must separate adjacent <keywords> from one another by SPACES or
Search for words, search case sensitive
If a <search string> shall match only whole words (i.e. no letter must be adjacent to the <matching string>), the <search string> must be followed by the <keyword> word.
If the <search string> shall match only C-identifiers (i.e. whole words consisting of letters, digits and the underscore character), the <search string> must be followed by the <keyword> cword.
Note: in both cases, the search string itself may contain any character!
If upper and lower case letters must match exactly, the <search string> must be followed by the <keyword> case_sensitive.
Note: You may abbreviate any <keyword> as long as the abbreviation is unambiguous.
Example � SEQ Example * ARABISCH �3�:	the following <search string> will match 'high' and 'High', but not 'Highway':
'high' wo
Example � SEQ Example * ARABISCH �4�:	the following <search string> will match 'high' and 'highway', but not 'High':
'high' case

Simple search and replace
A <matching string> will be replaced by a <replacing string> if you append a = character and the <replacing string> to the searched <character string>.
Example � SEQ Example * ARABISCH �5�:	search for several abbreviations and replace them by their expansions:
'P4D' = 'PED4DOS'; 'SQ' = 'Software-Quelle'; 'e.g.'='for example'

Note: Whenever PED4DOS found a <matching string>, it skips over the <matching string> (or the <replacing string>, if the <matching string> was replaced) before executing the next <statement>, so no part of this <character string> will match a subsequently executed <search statement>.

Search pattern
Multiple <character strings> may be concatenated with + characters to form a simple <search pattern>. Two words, separated by a space, can be equally found by the following <search statements>:
Example � SEQ Example * ARABISCH �6�
'two words'
'two' + ' ' + 'words'

Hexadecimal characters
If a <character string> contains characters that cannot be displayed and/or entered via the keyboard, you may use the hexadecimal mode:
1.	a single <hex character> within a <character string> may be typed using the notation \xhh, where the placeholder hh must be replaced by the appropriate pair of <hex digits>
2.	a <character string> that contains merely <hex characters> may be written using the format x'hh...', where the placeholders hh must be replaced by the appropriate pairs of <hex digits>

If a <character string> contains one of the following characters, use the notation on the right hand side:
TAB	Use the notation \t (equivalent to \x09)
NEWLINE	Use the notation \n (equivalent to \x0d\x0a)
'	Use the notation \'
\	Use the notation \\

Here are several equivalent ways to describe a <search pattern> consisting of the numbers '12' and '34', separated by a TAB character:
'12\t34'
'12\x0934'
x'3132093334'
'12' + x'09' + '34'

Search for unknown character strings
If you search for words, that may be separated by multiple SPACE characters, you should search for an <unknown character string>, consisting of SPACES. An <unknown character string> is represented by the * character and may be further specified by the <character set> (i.e. the set of characters that the <unknown character string> may contain) and its <length limits>.
Example � SEQ Example * ARABISCH �7�:	the following <search pattern> will match the sequence of 'two' and 'words', separated by one or more spaces:
'two' + *(' ') + 'words'

The <character set> may be composed from the following components, using the + and - operators:
1.	a <character string>; any character contained in <character string> becomes member of the <character set>
2.	a <character interval> (i.e. two character strings that contain a single character each, associated by the .. <operator>) �'0'..'7' is equivalent to '01234567'
3.	one or more <keywords> of the following list, that denote a <predefined character set>:�letters, denotes any ASCII letter ('a'..'z' + 'A'..'Z'),�digits, denotes any decimal digit ('0'..'9'),�specials, denotes any special character ((x'20'..x'7f') - (letters + digits))�white_spaces or ws, denotes SPACE and TAB characters (x'20'+x'09')�new_lines or nl, denotes the NEWLINE characters
	Note: the <keywords> may be abbreviated.
Multiple <character sets> may be grouped using parentheses.
A - <operator> preceding the first item of a <character set> means "any character except the following"
Examples:
*('abc')	matches the letters 'a', 'b' and 'c'
*('0'..'9')	matches any digit from '0' to '9'
*(l+d)	matches any ASCII letters and digits
*(ws+nl)	matches SPACE and TAB and NEWLINE characters
*(-(ws+nl))	matches any character except SPACE, TAB and NEWLINE
*(x'21'..x'7f')	matches any printing ASCII character
*(sp - ’;,.’)	any special character except semicolon, comma and decimal point

If you want to explicitly define a <length limit> for the <unknown character string>, use the <keyword> length, followed by the <exact length limit> or by an interval of lower and upper limit, enclosed in parentheses. If you do not explicitly define a <length limit>, it defaults to length (1 .. 256):
Examples:
length 4	exactly 4 characters
l (4 .. 9)	at least 4, at most 9 characters
len (.. 9)	at most 9 characters
len (4 ..)	at least 4 characters

Replacing pattern
If the <replacing pattern> shall contain a part of the <matching string> that corresponds to a single <search item> within the <search pattern>, you may reference the string by <replacing item> that consists of a * character, followed by a number n; this <replacing item> refers to the string, that matches the n-th <search item> within the <search pattern>.
Example � SEQ Example * ARABISCH �8�:	two words, separated by SPACE characters, shall be exchanged:
*(letters) + *(' ') + *(letters) = *3 + *2 + *1;

If the searched words may be separated by SPACES as well as TAB and NEWLINE characters, modify the second <search item>:
Example � SEQ Example * ARABISCH �9�:	two words, separated by SPACE, TAB and NEWLINE characters, shall be exchanged:
*(l) + *(ws + nl) + *(l) = *3 + *2 + *1;

Preview: Chapter describes how to store parts of the <matching string> to <string variables>, modify the contents of <string variables>, and use <string variables> as part of the <replacing pattern>.
Search Region
You may restrict searching on certain columns within any line. The <search region> may define exactly one column or a column range. If a <search statement> contains a <search region>, the <matching string> must start within the denoted columns. A <search region> consists of a single column number or a interval of column numbers, surrounded with < and > characters.

Example � SEQ Example * ARABISCH �10�:	the <search statements>:
<1 .. 10> 'word';
or
<7> 'word';
will find the first occurrence of 'word' within the following line, but not the second one
first word, second word
Jump statements and labels
The sequential execution of the <search program> may be modified by <jump statements>; execution of a <jump statement> may depend on whether a <matching string> was found.
A <jump statement> starts with a : character, followed by an optional <condition> keyword, followed by the <jump target>.
<jump target> may be
1.	the <label> of the <statement> that shall be executed next
2.	the <file position> in the <current file>, where searching shall continue.
Supply a <statement> with a <label> by simply typing the name of the <label> followed by a : character in front of the statement. The <label> may contain from 1 to 15 characters (any combination of letters, digits and underscores (_)); the <label>is not case sensitive.
Execution of the <jump statement> may depend on the current setting of the global <hit flag>. <hit flag> is set to true each time a <matching string> is found in the <current file>; <hit flag> is set to false each time a <search statement> is executed and no <matching string> is found at the current <search position>. Use the <condition> keyword true, if the <jump statement> shall only be executed when the <hit flag> is set to true. Use the <condition> keyword false, if the <jump statement> shall only be executed when the <hit flag> is set to false. Omit the <condition> keyword, if the <jump statement> shall be executed anyway.
Replace the <file position> with the absolute or relative number of the line, column or byte no. (denoted by one of the <data item> keywords lines, columns, or bytes, respectively) within the <current file>, where searching shall continue. A relative number is denoted by the + (or -) sign preceding the numerical value and means: skip n <data items> from the current <search position> towards the end (the beginning) of the <current file>.
Note: A relative number counts from the current <search position>.
Replace the <file position> with one of the <position operators> ++ or --, if you want to set the <search position> to the end or the beginning of the <current file>.

Note: if the <jump target> of the <jump statement> denotes a new <search position>, the <hit flag> will be set to false if that <search position> does not exist in the <current file>; ignoring the "end of file" condition might result in an endless loop!

Example � SEQ Example * ARABISCH �11�:	search the word 'FILES' near the beginning of a line; on error, set the <search position> to the beginning of the next line and continue searching if a next line exists.
search:
<1>*(ws) + 'files' word : false error;
// edit the line that contains the word 'files'
// see examples

error: : <+ 1 line>; : true search;

The following labels are implicitly defined and have a special meaning:
begin	first <statement> of the <search program>
end	past the last <statement> of the <search program>
stop	terminate the <search program>

You may define your own begin <label> past the "initialization statements" of a <search program>: all <statements> preceding the begin label will be executed only once when starting execution of the <search program>.

The following label has a special meaning:
eof	the <statement> following this label will be executed when the end of the <current file> is reached unless when execute a <jump statement> to a <file position> that doesn't exist.

Example � SEQ Example * ARABISCH �12�:	search the first occurrence of the word 'FILES' and terminate the <search program>.
'FILES' word case : true stop;

Example � SEQ Example * ARABISCH �13�:	small (and incomplete) part of a syntax checker:
'if' cw ca : t if_stmnt;
'switch' cw ca : t switch_stmnt;
'while' cw ca : t while_stmnt;
...
if_stmnt:	// check syntax of the if statement
 *(ws+nl) len(0..) + '(' + * + ')' :f error;
...
error: : s ;

Variables
String variables
Implicit assignment to string variables
If you want to store the <matching string> to a <string variable> for later use, append the <search item> with the > <operator>, followed by the <name> of the <string variable>. The <name> of a <string variable> must begin with a $ character, followed by 1 to 15 characters (any combination of letters, digits and underscores (_)); the name is not case sensitive.
If you want to append the <matching string> to the content of a <string variable>, use the >> <operator> instead of the > <operator>:

Note: When searching for a compound <search pattern>, consisting of multiple <search items>, no <implicit assignment> will take place unless a <matching string> was found that matches the whole <search pattern>.

Example � SEQ Example * ARABISCH �14�:	search any word in column 1 and store it to the <string variable> $word.
<1> *(letters) > $word;

Use string variables
A <string variable> may be used wherever a <character string> must be supplied within a <statement>.
Whenever a <string variable> is used (for example as part of a <replacing pattern>) before assigning it a value, PED4DOS will try to get the value of an <environment variable> with a corresponding name (i.e. the <name> of the <string variable> without the leading $ character).

Example � SEQ Example * ARABISCH �15�:	two words, separated by SPACE, TAB and NEWLINE characters, shall be exchanged (same result as � REF _Ref341443238 * FORMATVERBINDEN �Example 9�, but using <string variables>):
*(l) > $w1 + *(ws + nl) > $sp + *(l) > $w2 = $w2 + $sp + $w1;

Example � SEQ Example * ARABISCH �16�:	find two words, separated by SPACE, TAB and NEWLINE characters; store the first word to the <string variable> $string; append the separating characters to $string; append the second word to $string:
*(l) > $string + *(ws + nl) >> $string + *(l) >> $string;
Example � SEQ Example * ARABISCH �17�:	find the word 'PATH' and replace it by the current value of the PATH environment variable:
'PATH' w ca = $path;

Explicit assignment to string variables
If you want to explicitly assign a value to a <string variable>, use the notation
(<string variable> = <string expression>)
The surrounding parentheses are required in order to distinguish the <explicit assignment> from a <search statement>.
Use the following notations for <string expression> where <string item> may be a <string constant>, a <string variable> or a <string function> (<numerical expression> is explained in chapter � REF _Ref342722005 \n �4.1.3.2.3�:
1.	<string item>
2.	(<string expression>)
3.	<string expression> <string operator> <string expression>
Replace <string operator> by one of the following:
+	Concatenation
	Example:
	'abc'+'123' // == 'abc123'
..	Interval (both <string items> should contain exactly 1 character; otherwise only the first character is used)
	Examples:
	'a' .. 'd' // == 'abcd'
	x'fd' .. x'02' // == x'fdfeff000102'
&	Bitwise AND
	Example:
	x'13f2' & x'7633' // == x'1232'
^	Bitwise XOR
	Example:
	x'13f2' ^ x'7633' // == x'65c1'
|	Bitwise OR
	Example:
	x'13f2' | x'7633' // == x'77f3'
4.	<string expression> * <numerical expression>
	Example:
	'abc' * 3 // == 'abcabcabc'

The <hit flag> is set to true if the result of the <string expression> contains at least one character, otherwise to false.
Example � SEQ Example * ARABISCH �18�:	combination of � REF _Ref342049001 * FORMATVERBINDEN �Example 15� and � REF _Ref341446311 * FORMATVERBINDEN �Example 16�:
*(l) > $w1 + *(ws + nl) > $sp + *(l) > $w2;
($string = $w2 + $sp + $w1);

One predefined <string variable> named display may be used to display the content of a <string expression> on the screen.
Example � SEQ Example * ARABISCH �19�:	display the content of the PATH environment variable:
(disp = $PATH);

Example � SEQ Example * ARABISCH �20�:	display the <matching string>:
<1>*(l) > disp;

One predefined <numerical variable> named retcode may be used to set the exit code of PED4DOS during execution of the <search program>.
Example � SEQ Example * ARABISCH �21�:	set the exit code for PED4DOS to 2:
(retcode = 2);

Compare string variables
If you want to check the current value of a <string item> or a <string expression>, use the notation
(<string expression> <relational operator> <string expression>)
The surrounding parentheses are required. <string expression> was explained in chapter � REF _Ref342570082 \n �4.1.3.1.3�.
Note: The result of comparison is a <numerical value> (1 == true, 0 == false).
The following <relational operators> are valid and set the <hit flag> to true if the description is true:
==	both operands are equal
!=	both operands are different
<	the left operand is alphabetically less than the right operand
>	the left operand is alphabetically greater than the right operand
<=	the left operand is alphabetically less than or equal to the right operand
>=	the left operand is alphabetically greater than or equal to the right operand

Example � SEQ Example * ARABISCH �22�:	modification of � REF _Ref341496954 * FORMATVERBINDEN �Example 13�:
*(l) > $keyword: f e;
($keyword == 'if') : t if_stmnt;
($keyword == 'switch') : t switch_stmnt;
($keyword == 'while') : t while_stmnt;
...
if_stmnt:	// check syntax of the if statement
 *(ws+nl) + '(' + * + ')' :f error;
...
error: : s ;

Numerical variables
Implicit assignment to numerical variables
If you want to store the <search position> of a <matching string> to a <numerical variable> for later use, append the > <operator>, followed by the <name> of the <numerical variable>, to the <search item>. The <name> of a <numerical variable> must begin with a # character, followed by 1 to 15 characters (any combination of letters, digits and underscores (_)); the name is not case sensitive. A <numerical variable> can hold any integer value in the range from -999999999 to +999999999.

Note: When searching for a compound <search pattern>, consisting of multiple <search items>, no <implicit assignment> will take place unless a string matching the whole <search pattern> was found.

Use numerical variables
A <numerical variable> may be used wherever a <numerical item> must be supplied within a <statement>.
Whenever a <numerical variable> is used before it was assigned a value, PED4DOS will use the value 0.

Example � SEQ Example * ARABISCH �23�:	search the word 'placeholder' and save its <search position>; search the new value for 'placeholder' elsewhere in the <current file>; go to the saved <search position> and replace 'placeholder':
'placeholder' > #ph;
// search the new value for 'placeholder'

// $ph contains the new value for 'placeholder'
: <#ph>; 'placeholder' = $ph : stop;

Explicit assignment to numerical variables
If you want to assign a value to a <numerical variable>, use the notation
(<numerical variable> = <numerical expression>)
The surrounding parentheses are required.
Use the following notations for <numerical expression> where <numerical item> may be a <numerical constant>, a <numerical variable> or a <numerical function>:
1.	<numerical item>
2.	(<numerical expression>)
3.	<numerical expression> <numerical operator> <numerical expression>
Replace <numerical operator> by one of the following:
+	Addition
-	Subtraction
*	Multiplication
/	Division
%	Remainder
<<	Bitwise shift left
>>	Bitwise shift right
&	Bitwise AND
^	Bitwise XOR
|	Bitwise OR
&&	Logical AND
||	Logical OR

The <hit flag> is set to false if the result of the <numerical expression> equals 0, otherwise to true.

Example � SEQ Example * ARABISCH �24�:
(#1 = (#2 * (#3 + 3)));

Compare numerical variables
If you want to check the current value of a <numerical item> or a <numerical expression>, use the notation
(<numerical expression> <relational operator> <numerical expression>)
The surrounding parentheses are required. <numerical expression> was explained in chapter � REF _Ref342722005 \n �4.1.3.2.3�.
Note: The result of comparison is a <numerical value> (1 == true, 0 == false).
The following <relational operators> are valid and set the <hit flag> to true if the description is true:
==	both operands are equal
!=	both operands are different
<	the left operand is less than the right operand
>	the left operand is greater than the right operand
<=	the left operand is less than or equal to the right operand
>=	the left operand is greater than or equal to the right operand

Functions
If you want to get the result of a <function>, use the notation
<function> (<parameter>, <parameter>,...)
The number of parameters and their type depend on the <function>; each <parameter> must be replaced by a <variable> or <constant value> of the required type. Several predefined <functions> are available (see below).
String functions
A <string function> may be used wherever a <string item> is required.
The following <string functions> are available:

$num(#var)�returns a <character string> that contains the value of #var in a printable format.
 Example:
$val = $num(123) // = '123'��$hex(#var, #len)�returns the value of #var as a hexadecimal string, that contains at least #len (at most 8) <hex digits>.
Example:
$val = $hex(0x123, 4) // = '0123'��$mem(#var, #count)�returns the low order #count (at most 4) bytes from the <numerical variable> #var as a <character string>.
Example:
$val = $mem(0x616263, 2) // = 'cb' = x'6362'��$substr($var, #start, #len)�returns a part of the string contained in $var, starting at #start and containing at most #len characters. (#start == 1 means: starting at the first character)
Example:
$val = $substr('abcdef', 2, 3) // = 'bcd'��$input($var)�displays the string contained in $var; returns the string that you enter via the keyboard
Example:
$val = $input('new value for $val ')��$lower($var)�Converts the string contained in $var to lower case letters.
Example:
$val = $lower('AbCDef') // = 'abcdef'��$upper($var)�Converts the string contained in $var to upper case letters.
Example:
$val = $upper('AbCDef') // = 'ABCDEF'��$file(0)�returns the name of the <current file> (the parameter value 0 is requested for future use)��
Numerical Functions
A <string function> may be used wherever a <string item> is required.
A <numerical function> may be used wherever a <numerical item> is required.
The following <numerical functions> are available:

#len($var)�returns the number of characters contained in $var.
Example:
#val = #len('abc') // = 3��#byte()�returns the current <search position>, i.e. the offset from the beginning of the <current file> to the character, that will be checked next to find a <matching string>; the value 0 denotes the first character of the file
Example:
#val = #byte() // = 0 at the begin of the file��#line()�returns the number of the line, that contains the <search position>; the value 1 denotes the first line of the file.
Note: This function returns the value 0, if the current input file is not an ASCII text file.
Example:
#val = #line() // = 1 at the begin of the file��#column()�returns the number of the column, that corresponds to the <search position>; the value 1 denotes the first column of the line.
Note: This function returns the value 0, if the current input file is not an ASCII text file.
Example:
#val = #column() // = 1 at the begin of a line��#num($var)�returns the integer value of the printable number contained in $var.
Example:
#val = #num('123') // = 123��#hex($var)�returns the integer value of the hexadecimal number contained in $var.
Example:
#val = #hex('1f2') // = 0x1f2��#mem($var, #count)�returns the first #count (at most 4) bytes from the <string variable> $var as an integer value.
Example:
#val = #mem(x'010203', 2) // = 0x0201��#options($var)�modifies the perform options for all files according to the string contained in $var; the string must start with the characters 'p:', followed by the option strings as described in chapter � REF _Ref342721761 \n �2�
Example:
#options('p:b') // set batch mode for all files��
Syntax summary
Executing a search program
This chapters describes exactly how PED4DOS executes a <search program>:
1.	The <search position> is set to 0 (that is the offset to the first character of the <current file>; the first <statement> of the <search program> becomes the current <statement>.
2.	If the current <statement> is a <search statement>:
2.1	The <character string> starting at the <search position> is checked against the <search pattern>. If a <matching string> is found:
2.1.1	The <hit flag> is set to true
2.1.2	If a <replacing pattern> has been defined, the <matching string> is replaced by a <replacing string> after a confirmation dialog
2.1.3	The <search position> is set past the <matching string> (or past the <replacing string> if a replacement took place)
3.	If the current <statement> is an <assignment statement> or a <compare statement>
3.1	The assignment or the comparison is executed
3.2	The <hit flag> is set according to the result
4.	If the current <statement> is a <jump statement> whose <jump target> is a <label>, the <statement> past that <label> becomes the current <statement> (continue with 2.)
5.	If the current <statement> is a <jump statement> whose <jump target> is a <file position>, the <search position> is set to <file position> and the <hit flag> is set to true if <file position> exists (otherwise the <search position> is set past the last byte of the <current file> and the <hit flag> is set to false)
6.	If the current <statement> is the last <statement> of the <search program>, or a <jump statement> to the predefined end <label> is executed
6.1	The <search position> is incremented by 1 unless
either	any <matching string> was found while executing the preceding <search statements>
or	the <search position> was modified while executing a <jump statement>
6.2	If the end of the <current file> has been reached
6.2.1	If a eof <label> has been defined in the <search program>, a <jump> to that label is executed.
6.6.2	Otherwise, the <search program> is terminated (stopped).
6.3	Execution is resumed at the first <statement> (or at the <statement> following the begin label if you have explicitly defined it).
7.	The <statement> past the current <statement> becomes the current <statement> (continue at 2.)
Syntax description
Definitions
Terminals are endpoints in the syntax definition. No other resolution is possible. Terminals include the set of reserved keywords and user-defined identifiers. Keywords may be abbreviated as long as the abbreviation is unambiguous.
Nonterminals are placeholders in the syntax and are defined elsewhere in the syntax definition. Definitions can be recursive.
A production rule describes how nonterminals may be replaced by a composition of terminals and other nonterminals (commonly called symbols). The operator ::= means "may be replaced by a composition of".
Conventions
The following characters and/or fonts have a special meaning:
Bold text�Denotes a terminal; you must type a terminal exactly as shown (but letters are not case sensitive); any character or character sequence, that doesn't have a special meaning as described in this chapter, is a terminal (even if not printed in a bold font)��<nonterminal>�Denotes a symbol, that may be replaced by a composition of terminals and other nonterminals; the name of a nonterminal may contain spaces.
Example: <character string>��|�Separates alternatives��[]�Enclose optional symbols��{}�Enclose symbols that may be repeated��{}n�Enclose symbols that must be repeated exactly n times��{}n1..n2�Enclose symbols that must be repeated at least n1 times and at most n2 times (if n2 is omitted, the symbols may be repeated unlimited)��"..."�Comment that describes the production rule��
Symbols, that are separated by spaces throughout this syntax description, may be separated by SPACE, TAB and NEWLINE characters as well as comments; a comment starts with a double-slash sequence (//) and ends at the end of the line.
Syntax part 1
The first part of the syntax descriptions shows the fundamental construction of a <search program> in hierarchical order:

nonterminal�may be replaced by�comment��<search program> ::=�<statement> {; <statement> } 0..n�"a <search program> consists of one or more <statements>, separated by ; characters"��<statement> ::=�[<label> :]�[<search statement>� | <explicit assignment>� | <comparison>]�{ <jump statement> } 0..n �"a <statement> is a <search statement> or an <explicit assignment> or a <comparison>; it may begin with an optional <label>, followed by a : <character>; it may be followed by one or more optional <jump statements>"��<label> ::=�<name> ���<search statement> ::=�[<search region>]�<search pattern>�[= <replacing pattern>]���<explicit assignment> ::=� (<string variable> = <string expression>)�| (<numerical variable> = <numerical expression>)���<comparison> ::=� (<string expression> <relational operator> <string expression>)�| (<numerical expression> <relational operator> <numerical expression>)���<jump statement> ::=�: [<condition>]� {� <label>�| < <file position> >� } ���
Syntax part 2
The second part of the syntax description shows all <nonterminals> of a <search program> in alphabetical order:

nonterminal�may be replaced by�comment��<character> ::=� <printable character>�| \x<hex character>�| \t�| \n���"TAB character (= x'09')"�"NEWLINE characters (= x'0d0a')"��<character interval> ::=�'<character>' .. '<character>'�"any <character> within the range from the first <character> to the second <character> inclusive"��<character set> ::=�[-] <character set item>� [{ + | - } <character set>] �| [-] (<character set>)��"set of all characters that may be contained within an <unknown character string>"��<character set item> ::=�<character interval>�| <string item>�| <predefined character set>�"set of characters"��<condition> ::=�true�| false�"jump if <hit flag> is set"�"jump if <hit flag> is cleared"��<data item> ::=� lines�| columns�| bytes�"valid only in text files"�"valid only in text files"�"default"��<digit> ::=�0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9���<exact length> ::=�1 .. 256�"any value in the range from 1 to 256 "��<file position> ::=� [<data item>]� [<relative operator>]� <numerical item> >�����| --�| ++�"<numerical item> denotes the number of a line or of a column within the current line (based 1) or the number of bytes (based 0), depending on <data item>"�Note: the items may appear in any order"�"begin of file"�"end of file"��<hex character> ::=�<hex digit><hex digit>�"example:�x'1b' corresponds to the ESC key"��<hex digit> ::=

�<digit>�| A | a | B | b | C | c | D | d | E | e | F | f���<implicit assignment> ::=� > <string variable>��| >> <string variable>��| > <numerical variable>�"store the <matching string> to <string variable>"�"append the <matching string> to the content of <string variable>"�"store the <search position> of the <matching string> to <numerical variable>"��<jump target> ::=� <label>�| <predefined label>�| < <file position> > ���<label> ::=�<name>���<length limits> ::=� length �{ <exact length>� | ([<lower length limit>] .. [<upper length limit>])�}�"either <lower length limit> or <upper length limit> is required; if both are supplied, <lower length limit> must be less than <upper length limit> " ��<letter> ::=�a | b | c | ... | y | z | A | B | ... | Y | Z�"any lower case and upper case letter"��<lower length limits> ::=�0 .. 256�"any value in the range from 0 to 256 "��<name> ::=�{ <letter> | <digit> | _ }1..15 �" not case sensitive"��<numerical constant> ::=�-999999999 .. 999999999�"any integer value in the range from -999999999 to +999999999"��<numerical expression> ::=� [- | ˜] <numerical item> [<numerical operator> <numerical expression>] �| [- | ˜] (<numerical expression>)��"examples:"�" (-1+2) "�" -(2*(3+4)) "�" 200 / #var1 "��<numerical function> ::=�#<name> (<parameter list>)�"see description of functions in chapter � REF _Ref343150448 \n �4.1.3.3.2�"��<numerical interval> ::=�<numerical item> .. <numerical item>�"the value of the first <numerical item> must be less than the value of the second <numerical item>"��<numerical item> ::=

� <numerical constant>�| <numerical variable>�| <numerical function>���<numerical operator> ::=�	+�|	-�|	*�|	/�|	%�|	<<�|	>>�|	&�|	^�|	|�|	&&�|	||��"the operators are described in chapters � REF _Ref342722005 \n �4.1.3.2.3�"��<numerical variable> ::=�#<name>�"may contain any integer value in the range from -999999999 to +999999999"��<parameter list> ::=� [<parameter> � { , <parameter> }0..7]���<predefined character set> ::=�letters��| digits�| specials�| white_spaces | ws��| new_lines | nl�"any upper case and lower case letter" �"any digit"�"any special printing character"�"SPACE characters and TAB characters "�"NEWLINE characters"��<predefined label> ::=� begin���| end��| stop�"first statement of a <search program>; may be redefined within <search program>"�"past the last statement of a <search program>"�"terminate the <search program>"��<printable character> ::=��"any character that can be displayed on the screen and entered via the keyboard"��<relational operator> ::=�	<�|	<=�|	==�|	!=�|	>=�|	>�"less than"�"less than or equal to"�"equal "�"not equal"�"greater than or equal to"�"greater than"��<relative operator> ::=�	+��|	-�"from the <search position> towards the end of the file"�"from the <search position> towards the begin of the file"��<replacing item> ::=�<string item> �| * <numerical item>��"<numerical item> identifies the <matching string> that matches the n-th <search item>" ��<replacing pattern> ::=�<replacing item> { + <replacing item>}0..n���<search item> ::=�{ <string item>� | <unknown string> }�{<implicit assignment>}0..n���<search pattern> ::=�<search item> { + <search item>}0..n���<search region> ::=�< <first column> [.. <last column>] >�"the <matching string> must begin between <first column> and <last column>; only valid for ASCII text files "��<string constant> ::=� '{<character>}0..256'�| x'{<hex character>}0..256'���<string expression> ::=�<string item> [<string operator> <string expression>] �| (<string expression>)�| <string expression> * <numerical expression> ��" the length of the result of <string expression> must not exceed 256 "�"examples:
 ('word1' + 'word2') � ' ' * 20 � $text & (x'7f' * 256) "��<string function> ::=�$<name> (<parameter list>)�"see description of funtions in chapter � REF _Ref343150371 \n �4.1.3.3.1�"��<string item>� <string constant>�| <string variable>�| <string function>���<string operator> ::=�	+�|	..�|	&�|	^�|	|��"the operator are described in chapters � REF _Ref342570082 \n �4.1.3.1.3�"��<string variable> ::=�$<name>�"can contain up to 256 <characters> "��<unknown string> ::=�* [(<character set>)]� [<length limits>]���<upper length limits> ::=�1 .. 256�"any value in the range from 1 to 256 "��
Examples
The SAMPLES directory contains several command files and program files (i.e. files that contain a <search program> for PED4DOS).
Run the batch file DEMO.BAT if you want to execute some of the examples in chapter � REF _Ref341754927 \n �4.1�.
The following chapters describe more complex <search programs>.
Check the FILES parameter in CONFIG.SYS
If you want to check how many files may be opened at the same time, refer to the FILES parameter in the file CONFIG.SYS and replace it by another value if the current setting is not sufficient:
// FILES.PRG
// set the FILES value in config.sys to at least 128

// find the keyword 'files' near the beginning of the current line
<1> *(ws)l(0..) + 'files' :f next_line;
// find the = character and store the current value to $par
*(ws) l(0..) + '=' + *(ws) l(0..) + *(digit)>$par :f next_line;
// convert $par to an integer value
(#par = #num ($par));
// compare with the requested value; terminate if sufficient
(#par >= 128) :t s;
// the current value is to small
// set the search position back to the parameter value
:<- #len($par) bytes>;
// replace by the requested value, then terminate the search program
$par = '128' : s;

// skip 1 line; stop at the end of the file
next_line:
 :<+1 line> :f s;
// end of FILES.PRG

Convert special letters from ANSI to OEM or ASCII
These <search programs> are especially useful for German users. Use ANSI2ASC.PRG to convert German umlauts from the ANSI code (used by MS Windows, MS Word for Windows) to the ASCII code (i.e. convert each umlaut to 2 ASCII letters). Use ANSI2OEM.PRG to convert German umlauts from the ANSI code (used by MS Windows, MS Word for Windows) to the OEM code (used by MS-DOS).
// file ANSI2ASC.PRG
// convert german umlauts from ANSI to ASCII
x'e4'='ae':t b;		// 'ä'
x'f6'='oe':t b;		// 'ö'
x'fc'='ue':t b;		// 'ü'
x'c4'='Ae':t b;		// 'Ä'
x'd6'='Oe':t b;		// 'Ö'
x'dc'='Ue':t b;		// 'Ü'
x'df'='ss':t b;		// 'ß'

// file ANSI2OEM.PRG
// convert german umlauts from ANSI to OEM
x'e4'= x'84':t b; 	// 'ä'
x'f6'= x'94':t b; 	// 'ö'
x'fc'= x'81':t b; 	// 'ü'
x'c4'= x'8e':t b; 	// 'Ä'
x'd6'= x'99':t b; 	// 'Ö'
x'dc'= x'9a':t b; 	// 'Ü'
x'df'= x'e1':t b; 	// 'ß'

Format a list file as input for a spreadsheet program
If you want to copy the data from a list file to your spreadsheet like MS Excel, you have to separate the data from headlines, control characters for the printer, etc., and to separate the data fields by appropriate characters (for example TAB characters). Use LIST1.PRG to output only the data to the log file. Use LIST2.PRG to delete all but the data from the original list file.
The original list file LIST.IN looks like this; the first 3 lines are repeated on each page:

 salesman | invoiced sales in 1995 |
 | 1. quarter | 2. quarter | 3. quarter | 4. quarter |
 -------------+--------------+--------------+--------------+--------------|
 Smith | 120,000.00 | 120,000.00 | 120,000.00 | 120,000.00 |
 Johnson | -3,000.00 | 15,000.00 | 33,000.00 | 36,000.00 |
 Carter | 2,278,239.89 | 78,055.50 | 0.00 | 0.00 |

The following <search program> will display the data contained in the list file; use the /l option to copy this output to a log file:

// LIST1.PRG
// display nothing but the data
// use the option /l:list.out to copy the data to a file

// inhibit any other output to the log file
(#options ('p:-l:+lo'));

begin:
find_headline:
// skip empty line
*(ws)l(0..) + nl : t find_headline;
// find the first headline; stop on error
<1> ' salesman ':f s;
skip_line:
// skip this line
* + nl;
// check for dashed line; skip dashed line
<1> ' ------' + * + nl :f skip_line;

check_line:
// check for end of page (empty line)
*(ws)l(0..) + nl : t find_headline;
// skip leading spaces
*(ws);
// display name
*(-ws) > display;

check_number:
// skip column separator
*(ws)l(0..) + '|' + *(ws)l(0..);
// check for end of line
nl > display :t check_line;
// display a TAB character
(display = '\t');
// display sign
'-' > display;

disp_digits:
*(digit) > display;
// skip comma
',':t disp_digits;
// display fractional part
'.' > display + *(digit) > display;
// search next number
:check_number;
// end of LIST1.PRG

The log file will look like this:

Smith	120000.00	120000.00	120000.00	120000.00
Johnson	-3000.00	15000.00	33000.00	36000.00
Carter	2278239.89	78055.50	0.00	0.00

The following <search program> will modify the list file:

// LIST2.PRG
// delete all but the data from the list file

find_headline:
// delete empty line
*(ws)l(0..) + nl = '' : t find_headline;
// find the first headline; stop on error
<1> ' salesman ':f s;
delete_line:
// delete this line
:<col 1>; * + nl = '';
// check for dashed line; delete dashed line
<1> ' ------' + * + nl = '' :f delete_line;

modify_line:
// delete leading spaces
:<col 1>;
// check for end of page (empty line)
*(ws)l(0..) + nl = '' : t find_headline;
// delete leading spaces
*(ws) = '';
// skip name
*(-ws);

// clean up the numbers
clean_number:
// delete column separator
*(ws)l(0..) + '|' + *(ws)l(0..) = '';
// check for end of line
nl :t modify_line;
// insert a TAB character
''='\t';
// skip sign
'-';
skip_digits:
*(digit);
','='':t skip_digits;
'.' + *(digit);
:clean_number;
// end of LIST2.PRG

After modification the list file will look like this:

Smith	120000.00	120000.00	120000.00	120000.00
Johnson	-3000.00	15000.00	33000.00	36000.00
Carter	2278239.89	78055.50	0.00	0.00

Contents of the PED4DOS software package
The PED4DOS software package (compressed ZIP file or diskette) contains the following files and directories:
README.1ST�Introduction to the use of PED4DOS��README.GER�Introduction to the use of PED4DOS (in German language)��FILE_ID.DIZ�Short description��PED4DOS.TXT�Documentation File (ASCII text file); also available in the format of "Microsoft Word for Windows" (see � REF _Ref343588342 \n �6.3�)��LICENSE.TXT�License Conditions (ASCII text file)��REG.FRM�Registration Form (ASCII text file) for purchasing a license for PED4DOS��REG_GER.FRM�Registration Form (ASCII text file) for German users��
Executable Files
The directory BIN contains the files:
P4D.EXE�MS-DOS based executable file��SETUP.EXE�MS-DOS based executable file;�used to create a licensed version of P4D.EXE��
Samples
The directory SAMPLES contains the files:
DEMO.BAT�command file��ANSI2ASC.PRG
ANSI2OEM.PRG
CENTER.PRG
COUNT.PRG
FILES.PRG
LIST1.PRG
LIST2.PRG�search program files��CONFIG.SYS
DEMO.IN
LIST.IN�input files for demo��
Documentation
The directory DOC\ENGLISH contains the files:
PED4DOS.DOC�This document in the format of "Microsoft Word for Windows"��REG.FRM�Registration Form (ASCII text file) for purchasing a license for PED4DOS��
The directory DOC\GERMAN contains the files:
PED4DOS.DOC�This document in German language in the format of "Microsoft Word for Windows"��PED4DOS.TXT�This document in German language as ASCII text file��LIZENZ.TXT�License Conditions in German language asASCII text file��REG_GER.FRM�Registration Form (ASCII text file) for German users��

