[image: image1.png]
PROGRAMMER’S GUIDE

The Evaluation Version of WinZilla

 The “Evaluation Version” (a.k.a., the shareware version) is a complete version of the WinZilla library, and it is not crippled in any way. We wanted to allow potential customers like yourself a complete and fair evaluation of our library. We felt that the risks inherent in doing this (i.e. unauthorized use) are outweighed by the need for you to be able to really put the library through it’s paces.

 That having been said, there is a splash message that will appear when you start your application that identifies it as having been built with the evaluation version. It is illegal to distribute your applications with this version of WinZilla; it’s purpose is to allow you to evaluate whether or not WinZilla meets your needs.

 If you continue to use the WinZilla Library for more than thirty (30) days after installation, you are required to register the library. Upon registration, you will receive a completely licensed, royalty-free version of the library, and will be entitled to upgrade discounts later.

 We hope you enjoy evaluating WinZilla, and we hope to add you to our ever-growing list of customers. The WinZilla movement has begun!

Introduction to WinZilla
 Thank you for purchasing (or evaluating) WinZilla. If you’ve already programmed Windows (in any language), you know that it can be a frustrating experience. It always will be…this library can’t hope to alleviate all your Windows programming woes. What it will do is make the process of developing a real Windows application easier and, hopefully, fun.

 First, WinZilla provides a suite of ‘wrapper’ functions to simplify GDI and interface programming. For example, if you’ve ever programmed the GDI before, you know of the pure agony of dealing with pens, brushes, fonts, and all that. You have to obtain a device context, create your pens and brushes, select them into the device context…all of that before you actually put anything in your window! To make it even worse, you have to de-select all that crap and release it all before you can destroy the device context. What a pain! By contrast, WinZilla gives you a large collection of functions that render graphics with a single call! You no longer care about pens, brushes, and device contexts, as WinZilla takes care of all of that mess behind the curtains.

 Second, and most importantly, WinZilla gives you a different programming paradigm, which is a fancy way of saying that it approaches Windows programming totally differently from all other APIs (Application Programming Interfaces) and languages currently available. Traditionally, Windows programming involves responding to system messages, usually via a huge, ugly switch statement. With WinZilla, you get the benefit of being able to respond to messages selectively, yet still control the flow of your application in a linear fashion, just like you used to do with DOS programming.

 Lastly, it’s important to realize that WinZilla does not prevent you from accessing traditional Win32 functions. In fact, certain Win32 functions are important to know and understand when dealing with WinZilla, and those are covered in this document.

 I think you’ll find that within a short amount of time, you’ll be writing some pretty darn cool programs; drawing programs, editors, install programs, and just about anything else you can imagine. So go ahead, jump right in, and let’s get started!

Installing and Building

 In order to be able to build a WinZilla application, your compiler must know where to find the winzilla.h header file and the winzilla.lib library file. In Microsoft Developer Studio, look under Tools->Options->Directories and add the appropriate paths to where WinZilla was installed.

 Additionally, you must link in the windows file comctl32.lib, which is usually found in the lib directory of your compiler.

 If you use a different compiler with WinZilla, refer to the compiler documentation for information on how to specify paths to libraries and includes.

Hello World!

 What API can call itself documented unless it includes a hello world. In case you’re not familiar with this long-standing tradition, the premise is that with every API there exists a minimalist program that does nothing but display the text “hello world”. Of course, the text could be anything, but somewhere, at some point in our past, some programmer decided to print "hello world” and it stuck. We’ll keep with that tradition here.

 For your amusement, then, here is the WinZilla version of hello world:

#include <windows.h>

#include “winzilla.h”

// the standard WinMain definition

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

PSTR szCmdLine, int iCmdShow)

{

HWND my_window;
//--- the handle of the application window

// initialize WinZilla

WZ_Init(hInstance, NULL);

// open the application window

my_window = WZ_OpenWindow(WZ_DEFAULT, "Hello World", NULL,

WZ_NullFunc, FALSE);

// print the world-famous text

WZ_Print(my_window, 50, 50, “Hello World!”);

// wait for the user to close the application

do

WZ_MessageControl();

while(!WZ_AppDone);

// the standard WinZilla closer for WinMain

return WZ_WMsg.wParam;

}

 So what does this do? Well, I’ll feel really disappointed if you can’t just read the code and figure out exactly what each line does. But I’ll spare myself that knowledge by explaining it to you.

 First, you have the obligatory includes. The file winzilla.h defines all WinZilla functions, macros, structures, and all that sort of thing.

 Next, we have WinMain, which is the textbook definition for Win32. Windows calls this when your application is started. Again, standard stuff seen in all Win32 applications in C.

 Next, we have the declaration of our window handle. This will be the variable we will use to reference the window. Easy so far, right?

 A call to WZ_Init prepares WinZilla to take over things from here. All it’s doing is initializing a collection of critical internal variables and such. Nothing to screw up here.

 Next, WZ_OpenWindow, a single simple function call, creates and opens our main application window. The parameters, without going into specific details, instruct WinZilla to open a window of default size and position on the screen. Once it has done that, it returns the handle to the window for us to store in our HWND variable.

 The WZ_Print on the next line is functionally equivalent to the standard C printf function. WinZilla extends it to allow you to specify in which window and where you want the text printed. In keeping with my promise to you, it doesn’t get much easier than that.

 At this point, all that’s left to do is wait for the user to close the window. So we just sit there and process system messages until we get word from WinZilla that the user has closed the main application window, which sets a global variable called WZ_AppDone to TRUE.

 There. Now wasn’t that painless? If you’re curious as to what the Win32 equivalent of hello world looks like, just pick up a copy of Charles Petzold’s excellent book “Programming Windows 95” on pages 22 and 23. In fact, I’d recommend picking that book up anyway…even with WinZilla, you will definitely find it useful. While I’m on the subject, I’d also recommend “Win32 Programming” by Brent Rector and Joseph Newcomer. That one is most definitely “da bomb”…it’s like the bible of Win32, and you won’t regret picking it up.

On to Practical Things

 Now that you’ve had a taste of what a simple WinZilla program looks like, let’s expand it a bit to do something at least a little more exciting. This project will give us a simple drawing program. No frills, of course, but then what do you expect…this is our second example!

 This application is really a pretty good template for your own WinZilla applications. It, and most of your own applications, will be implemented like this:

1. Define the user interface

This step involves creating the main application window, any child windows (such as a status bar, a client area, and so on), and icon toolbar menus.

2. Watch for your program’s options to be selected

Essentially, set up a loop that waits for the user to select an item in one of your menus. Keep looping until they select the option that closes your application.

3. Respond appropriately to user commands

Watch the global WZ_LastCommand to see which menu item was chosen by the user.

 In the case of our drawing application, we use a simple single window for our drawing surface, and we place a small icon toolbar on the left side of the client area. This toolbar is movable, but it will snap to the left and top of the client area.

 Once our menu is set up, all that remains to do is watch for each menu item to be selected. Notice that each command is fulfilled by a small bit of linear code. For example, here is the code that executes when the user chooses to enter “draw line” mode:

case LINE_MODE:

WZ_SetButtonState(icon_bar, LINE_MODE, TRUE);

// let the user draw a line

do

{

result = WZ_GetPoint(&x1, &y1, TRUE);

if (result == WZ_SUCCESS)

{

result = WZ_GetPoint2(x1, y1, &x2, &y2, TRUE);

if (result == WZ_SUCCESS)

{

WZ_MoveTo(my_window, x1, y1);

WZ_LineTo(my_window, x2, y2);

}

}

} while(result == WZ_SUCCESS);

WZ_SetButtonState(icon_bar, LINE_MODE, FALSE);

break;

 This is very straightforward, and a good example of how programming linearly makes things very clear.

 First, we force the icon “line draw” button to the “pushed in” state, indicating we’re in the line drawing mode.

 To draw a line, the user simply clicks and drags in the client area of the window. The call to WZ_GetPoint returns as soon as the user clicks his left mouse button in the client area. (The last parameter “TRUE” indicates we want an immediate response, i.e. don’t wait for the mouse button to be released before returning). The resulting coordinate is stored in x1,y1.

 Similarly, the WZ_GetPoint2 gives us a rubber-banding line drawn from x1,y1 to the mouse cursor, and because the last parameter is “TRUE” (immediate mode), it is waiting for us to release the left mouse button. When this happens, the second point is selected in to x2,y2.

 Having all the information required to draw a line, all that remains is to actually draw it. Simply call WZ_MoveTo followed by WZ_LineTo and you’ve drawn your line. We repeat this whole process again, exiting only when the user cancels.

 Actually, cancelling happens only when the user clicks the right mouse button or selects another menu item. This is a very important concept to understand, because this makes it possible for your “linear” program to feel like an ordinary message-based windows application. This means that the user can actually select “draw circle” while in “draw line” mode, and the command doesn’t get lost. What happens is, WZ_GetPoint will return WZ_CANCELLED instead of WZ_SUCCESS, allowing the program to exit line drawing mode and loop back around to the WZ_GetMenu line. WZ_GetMenu recognizes that a command was selected already and immediately drops back out, resulting in a seamless change of modes. If any part of this process is unclear, re-read this paragraph and follow along in the source code, and you should see what I mean.

Moving On From Here

 We’ve covered the basics of WinZilla operation here, and that’s all you really need to know in order to get up and running. There are a number of example programs to illustrate the use of more advanced concepts, please run them and examine the sources. You can even use them as a template for your own applications. In particular, look at the “MegaDraw” application, which is a framework for a major, modern interface and a perfect starting point for your own programs. I think you’ll be impressed at how easily the interface is put together.

 Lastly, read the reference guide. The reference guide thoroughly documents every WinZilla function, system variable, and macro, explaining any caveats or pitfalls you might encounter in their use. I would recommend reading the whole thing through at once, then experimenting with the functions on your own.

 Good luck and happy coding!

[image: image2.png]
REFERENCE MANUAL

WZ_AddButton

Prototype

HWND WZ_AddButton(int x, int y, char *text, int retval, HWND parent);

Description

This function creates a single button in your window.

Parameters

x,y

The upper-left coordinate position for the button

text

A pointer to the text that will be used for this button

retval

The return value (i.e. the value WZ_LastCommand will be set to) for this button. Make sure this value is unique to your other return values in other controls.

parent

The window that will own this control

Return Value

A window handle to the created child control

WZ_AddCheckBox

Prototype

HWND WZ_AddCheckBox(int x, int y, char *text, int retval, HWND parent);

Description

This function creates a single checkbox in your window.

Parameters

x,y

The upper-left coordinate position for the checkbox

text

A pointer to the text that will be used for this checkbox

retval

The return value (i.e. the value WZ_LastCommand will be set to) for this checkbox. Make sure this value is unique to your other return values in other controls.

parent

The window that will own this control

Return Value

A window handle to the created child control. You’ll need this to check the state of the checkbox.

WZ_AddIconBar

Prototype

HWND WZ_AddIconBar(t_WZ_Menu *options, int max_cols, HWND owner);

Description

This function creates an icon toolbar from a collection of individual BMP files. The toolbar defaults to the top/left corner of the owner’s client area, but the user can drag it around to position it wherever he likes. The only exception to this is, if the toolbar is flagged to automatically size to the parent’s width or height, then they become unmovable.

Parameters

options

A pointer to a t_WZ_Menu array, usually defined using the WZ_MENUMAP/WZ_ENDMAP macros.

max_cols

The number of colums (or icons per row) for the toolbar. For vertical toolbars, make this 1 or 2. If you want a horizontal toolbar, you can set this value to some large number, like 1000, and it will be horizontal.

owner

The handle of window that will contain the toolbar.

Return Value

A window handle to the created icon toolbar.

WZ_AddRadioButton

Prototype

HWND WZ_AddRadioButton(int x, int y, char *text, int retval, HWND parent);

Description

This function creates a single radio button in your window.

Parameters

x,y

The upper-left coordinate position for the radio button

text

A pointer to the text that will be used for this radio button

retval

The return value (i.e. the value WZ_LastCommand will be set to) for this radio button. Make sure this value is unique to your other return values in other controls.

parent

The window that will own this control

Return Value

A window handle to the created child control. You’ll need this to check the state of the radio button, and you’ll want to set the state of the other radio buttons in that same group accordingly.

WZ_AdoptWindow

Prototype

void WZ_AdoptWindow(HWND hwnd, void (*Regen)(HWND hwnd), int BitmapRegenFlag);

Description

WZ_AdoptWindow “adopts” a window; i.e. if there is a window that was created by some other process or application, it becomes transformed into a WinZilla-created window. This can be dangerous, and should only be used if absolutely necessary.
Parameters

hwnd

The handle of the window to be adopted

Regen

A pointer to a Regen function, which is called automatically by WinZilla when the window needs re-painted. This can be WZ_NullFunc if you don’t want to specify a function.

BitmapRegenFlag

If TRUE, the window is automatically back-buffered (i.e., a chunk of memory is allocated for the window), and subsequent WinZilla GDI calls are rendered to both the buffer and to the actual window.

Return Value

None

WZ_Bezier
Prototype

void WZ_Bezier(HWND hwnd, POINT *pt, int count);

Description

Draws one or more continuous bezier spline curves in a window. The current pen settings for that window are used. The resulting spline shape is unfilled.

Parameters

hwnd

The window in which we’re drawing the spline

pt

A pointer to an array of POINT data defining the control points for the spline(s)

count

The number of elements in the POINT array

Return Value

None

WZ_ChooseColor
Prototype

int WZ_ChooseColor(COLORREF *color);

Description

Opens a standard color selection dialog box and allows the user to select a color or modify his custom palette of colors.

Parameters

color

a COLORREF pointer to store the chosen color in

Return Value

If the user clicks the OK button of the dialog box, the return value is nonzero, otherwise it is zero.

WZ_ChooseFont
Prototype

BOOL WZ_ChooseFont(LOGFONT *font);

Description

Opens a standard font selection dialog box and allows the user to select a font. If you want to use this as the current font, use &WZ_CurFont in the font field.

Parameters

font

A pointer to a LOGFONT variable to hold the defined font.

Return Value

If the user clicks the OK button of the dialog box, the return value is nonzero, otherwise it is zero.

WZ_Circle
Prototype

void WZ_Circle(HWND hwnd, int x, int y, int r);

Description

Draws a circle with a center at {x,y} and a radius of r. The current pen and fill settings for the window are used.

Parameters

hwnd

The handle of the window in which we’re rendering the circle

x,y

The coordinate for the center of the circle

r

The radius of the circle

Return Value

None

WZ_CloseDialog
Prototype

void WZ_CloseDialog(HWND hwnd);

Description

Closes a dialog window previously opened with WZ_OpenDialog.

Parameters

hwnd

The handle of the dialog window to be closed

Return Value

None

WZ_CloseWindow
Prototype

void WZ_CloseWindow(HWND hwnd);

Description

Closes a window previously opened with WZ_OpenWindow or WZ_AdoptWindow.

Parameters

hwnd

The handle of the window to be closed

Return Value

None

WZ_CreateStatusBar
Prototype

HWND WZ_CreateStatusBar(HWND hwnd, char *text);

Description

Adds a status bar child window to an existing WinZilla-created window. The status bar is automatically sized and position when the parent window changes size.

Parameters

hwnd

The handle of the window to receive the status bar

text

The default text to appear in the status bar

Return Value

A handle to the created child window (i.e., the status bar)

WZ_DrawBitmap
Prototype

void WZ_DrawBitmap(HWND hwnd, HBITMAP hbitmap, int x, int y, int mode);

Description

Draws a bitmap (reference through an HBITMAP) into a window, placing the upper-left corner of the bitmap at coordinate {x,y}.

Parameters

hwnd

The handle of the window in which to render the bitmap

hbitmap

The handle of the bitmap to be rendered

x,y

The coordinate for the upper-left corner of the bitmap

mode

The blitting mode for the operation. Generally, you’ll set this to SRCCOPY. Refer to the platform SDK help for BitBlt for a complete list of modes.

Return Value

None

WZ_Ellipse
Prototype

void WZ_Ellipse(HWND hwnd, int x1, int y1, int x2, int y2);

Description

Draws an ellipse sized to fit a rectangle defined by {x1,y1}-{x2,y2}. The current pen and fill settings for the window are used.

Parameters

hwnd

The handle of the window in which we’re rendering the ellipse

x1,y1,x2,y2

The coordinates for the bounding rectangle that defines the ellipse

Return Value

None

WZ_FindWindowBitmap
Prototype

HBITMAP WZ_FindWindowBitmap(HWND hwnd);

Description

If a window is buffered (see WZ_OpenWindow), this function will return a handle to the bitmap buffer for that window.

Parameters

hwnd

The handle of the window we’re dealing with

Return Value

If successful, an HBITMAP representing the window’s buffer. Otherwise, it will return NULL.

WZ_FloodFill
Prototype

void WZ_FloodFill(HWND hwnd, int x, int y);

Description

Fills an the area enclosed around point {x,y} in the window with the current fill settings for that window.

Parameters

hwnd

The handle of the window in which we’re drawing

x,y

The coordinate where the fill begins

Return Value

None

WZ_GetCircle
Prototype

int WZ_GetCircle(int x1, int y1, int *x2, int *y2, int immediate);

Description

This function will allow the user to select a second point with the left mouse button in any WinZilla-defined window. The first point is established by {x1, y1} and a rubber-band ellipse will follow the mouse cursor until the second point is selected. It will store the selected point in the integers pointed to by x2 and y2.

Parameters

x1, y1

The coordinates of the first point

x2, y2

Pointers to integers to receive the coordinates of the point selected

immediate

If TRUE, WZ_GetCircle will not wait for the mouse button to be released, otherwise it will wait. Immediate mode is useful for drag-and-drop type operations.

Return Value

WZ_SUCCESS if the operation resulted in a left mouse click in the client area of a window.

WZ_CANCELLED if the user selected a menu item or pressed the right mouse button.

WZ_GetClientHeight

Prototype

int WZ_GetClientHeight(HWND hwnd);

Description

Returns the physical height of the client area of a window

Parameters

hwnd

The handle of the window to check

Return Value

The physical height of the window’s client area

WZ_GetClientWidth

Prototype

int WZ_GetClientWidth(HWND hwnd);

Description

Returns the physical width of the client area of a window

Parameters

hwnd

The handle of the window to check

Return Value

The physical width of the window’s client area

WZ_GetCorner
Prototype

int WZ_GetCorner(int x1, int y1, int *x2, int *y2, int immediate);

Description

This function will allow the user to select a second point with the left mouse button in any WinZilla-defined window. The first point is established by {x1, y1} and a rubber-band rectangle will follow the mouse cursor until the second point is selected. It will store the selected point in the integers pointed to by x2 and y2.

Parameters

x1, y1

The coordinates of the first point

x2, y2

Pointers to integers to receive the coordinates of the point selected

immediate

If TRUE, WZ_GetCorner will not wait for the mouse button to be released, otherwise it will wait. Immediate mode is useful for drag-and-drop type operations.

Return Value

WZ_SUCCESS if the operation resulted in a left mouse click in the client area of a window.

WZ_CANCELLED if the user selected a menu item or pressed the right mouse button.

WZ_GetMenu
Prototype

void WZ_GetMenu(void);

Description

WZ_GetMenu waits for the user to select a menu item or other control in your application. Once that happens, WZ_LastCommand will be set to the return value or ID of that command.

Parameters

None

Return Value

None

WZ_GetMenuAndRect
Prototype

int WZ_GetMenuAndRect(RECT *rect);

Description

WZ_GetMenu waits for the user to select a menu item or other control in your application. Once that happens, WZ_LastCommand will be set to the return value or ID of that command. This behavior is identical to WZ_GetMenu.

Optionally, the user will click and drag a rubber-banding rectangle in the client area of a window instead of selecting a command. In that event, the coordinates specified will be stored in the RECT variable pointed to by rect.

This may be useful for applications that deal with “objects”, such as in a graphics application of some kind. If you find it limiting, it is relatively easy to implement your own using other WinZilla functions.

Parameters

rect

A pointer to a variable of type RECT, which will hold the coordinates of the rectangle if applicable.

Return Value

If TRUE, the user clicked and dragged a rectangle on the screen, and the coordinates are stored in the rect variable.

If FALSE, a command or menu option was selected and stored in WZ_LastCommand, and the contents of rect are unchanged.

WZ_GetMouse
Prototype

void WZ_GetMouse(int *x, int *y, int *b);

Description

Gets the current state of the mouse

Parameters

x, y

Pointers to integers to receive the coordinates of the mouse cursor

b

Pointer to an integer to receive the status of the mouse buttons, which is referenced as bit values (WZ_BUTTON1 | WZ_BUTTON2 | WZ_BUTTON3)

Return Value

None

WZ_GetPoint
Prototype

int WZ_GetPoint(int *x, int *y, int immediate);

Description

This function will allow the user to select a point with the left mouse button in any WinZilla-defined window. It will store the selected point in the integers pointed to by x and y.

Parameters

x, y

Pointers to integers to receive the coordinates of the point selected

immediate

If TRUE, WZ_GetPoint will not wait for the mouse button to be released, otherwise it will wait. Immediate mode is useful for drag-and-drop type operations.

Return Value

WZ_SUCCESS if the operation resulted in a left mouse click in the client area of a window.

WZ_CANCELLED if the user selected a menu item or pressed the right mouse button.

WZ_GetPoint2
Prototype

int WZ_GetPoint2(int x1, int y1, int *x2, int *y2, int immediate);

Description

This function will allow the user to select a second point with the left mouse button in any WinZilla-defined window. The first point is established by {x1, y1} and a rubber-band line will follow the mouse cursor until the second point is selected. It will store the selected point in the integers pointed to by x2 and y2.

Parameters

x1, y1

The coordinates of the first point

x2, y2

Pointers to integers to receive the coordinates of the point selected

immediate

If TRUE, WZ_GetPoint2 will not wait for the mouse button to be released, otherwise it will wait. Immediate mode is useful for drag-and-drop type operations.

Return Value

WZ_SUCCESS if the operation resulted in a left mouse click in the client area of a window.

WZ_CANCELLED if the user selected a menu item or pressed the right mouse button.

WZ_GetPrintSize
Prototype

RECT WZ_GetPrintSize(HWND hwnd, int x, int y, char *string, ...);

Description

When using WZ_Print, you may find it useful to know the dimensions of the drawn text; i.e. you may want to frame it with a rectangle or know how large a rectangle is required to erase it, etc. This function will return a RECT that can be used to frame the text. Note that this function doesn’t actually draw the text, it simply calculates the size the text will be when printed.
Parameters

hwnd

The handle of the window we’ll be using

x,y

The coordinate in client space where we’ll be drawing the text

string

The formatted string to print

…

Optional arguments to use with formatting codes in the string (see printf for examples of how this works)

Return Value

A RECT filled with the coordinates representing the size of the resulting text output.

WZ_GetWindowState
Prototype

int WZ_GetWindowState(HWND hwnd);

Description

Gets the state flags for a WinZilla-defined window

Parameters

hwnd

The handle of the window to check

Return Value

The flags for the window, or if not found, WZ_WINDOW_NOT_FOUND

WZ_GetWindowHeight
Prototype

int WZ_GetWindowHeight(HWND hwnd);

Description

Returns the physical height of a window

Parameters

hwnd

The handle of the window to check

Return Value

The physical height of the window (not the client area)

WZ_GetWindowWidth

Prototype

int WZ_GetWindowWidth(HWND hwnd);

Description

Returns the physical width of a window

Parameters

hwnd

The handle of the window to check

Return Value

The physical width of the window (not the client area)

WZ_Init
Prototype

void WZ_Init(HINSTANCE hInstance, char *icon);

Description

WZ_Init initializes WinZilla for use. It must be called prior to any other WinZilla function.

Parameters

hInstance

The instance variable as passed in to WinMain

icon

The string name of an icon resource for your application. This icon appears in the upper-left corner of the main application window, and also represents your program as viewed from an explorer window.

Return Value

None

WZ_InitFileTypes
Prototype

int WZ_InitFileTypes(void);

Description

Initializes the file open/close dialogs for use once you have manually initialized the WinZilla global WZ_FileFilter, like this:

WZ_FileFilter = "GCS Project Files (*.GPF)\0*.gpf\0" \

"GCS Level Files (*.GLF)\0*.glf\0"
\

 "All Files (*.*)\0*.*\0\0" ;

WZ_InitFileTypes();

Parameters

None

Return Value

Returns WZ_FAILURE if the WZ_FileFilter hasn’t been initialized, otherwise returns WZ_SUCCESS

WZ_IsWindowOutputOnly
Prototype

int WZ_IsWindowOutputOnly(HWND hwnd);

Description

Simply checks to see if the WZ_OUTPUT_ONLY flag is set for a WinZilla-created window.

Parameters

hwnd

The handle of the window we’re checking

Return Value

TRUE if the window is output only, otherwise FALSE.

WZ_LineTo
Prototype

void WZ_LineTo(HWND hwnd, int x, int y);

Description

Draws a line from the current graphics cursor position to {x,y}, using the current pen settings for the window in which the line is drawn. (See WZ_MoveTo)

Parameters

hwnd

The handle of the window in which we’re rendering the line.

x,y

The coordinate for the endpoint of the line.

Return Value

None

WZ_LoadBitmap
Prototype

HBITMAP WZ_LoadBitmap(char *filename);

Description

Loads a .BMP file from disk and returns a handle to it for you to use. Note that you should call the standard DeleteObject() function when you’re finished with the bitmap, so that windows may reclaim the resource space it consumed.

Parameters

filename

The complete path and filename (including extension) of the bitmap image to be loaded.

Return Value

A handle to the loaded bitmap, or NULL if the bitmap file was not found or was an invalid format

WZ_MaintainParentSpacing
Prototype

int WZ_MaintainParentSpacing(HWND hwnd, int style);

Description

This routine locks a window’s position relative to it’s parent, such that when the parent is resized, the window is altered accordingly.

Parameters

hwnd

The handle of the child window to affect

style

One of:

WZ_STRETCH_CORNER

Stretch the window to maintain spacing

WZ_MOVE_CORNERS

Move the corners to maintain spacing

Return Value

If successful, it will return WZ_SUCCESS. Otherwise, it will return either WZ_FAILURE, or if the window passed in cannot be found, WZ_WINDOW_NOT_FOUND.

WZ_Menubar
Prototype

void
WZ_Menubar(HWND owner, int base_id, int reset, char *options);

Description

This routine manually creates a pull-down menu. You can use this for simple programs that you don’t want to spend a lot of time building menu resources for. You’ll call this once for each ‘column’ in your pull-down menu; i.e. one call with “&File,&Open File,&Close File,~,&Quit” defines the File pull-down.

Parameters

owner

The handle of the window to receive the menu bar

base_id

The first value to set WZ_LastCommand to when an item from the menu is selected. The first item in the menu starts at base_id, and item n is base_id+(n-1).

reset

Set this to a non-zero value to force the first item in the menu bar, and zero for subsequent calls.

options

A pointer to a comma-delimited string of menu items, such as

“&File,&Open File,&Close File,~,&Quit”

The ‘&’ character underlines the character it precedes and makes it an ALT-<key> command. The ‘~’ character creates a separator bar.

Return Value

None

WZ_MessageControl
Prototype

void WZ_MessageControl(void);

Description

For use in locked loops. Any time your application needs to operate in a loop that doesn’t call any WinZilla function that polls the system (such as WZ_GetMouse or WZ_GetMenu), it should include a call to this function within the loop so that Windows can continue to process messages.

Parameters

None

Return Value

None

WZ_MoveTo
Prototype

void WZ_MoveTo(HWND hwnd, int x, int y);

Description

Moves the current graphics position to the coordinates x,y. Note that this doesn’t actually draw anything in a window, it just sets the first point of a line.

Parameters

hwnd

Currently, has no meaning. The graphics position is set simultaneously in all windows. For compatibility with future releases, however, you should use the handle of the window in which you intend to draw.

x,y

The coordinate in client space to move the graphics cursor to.

Return Value

None

WZ_OpenDialog
Prototype

HWND WZ_OpenDialog(char *dlgname, int method);

Description

This routine opens a dialog resource. Once open, WZ_LastCommand can be checked for dialog buttons and such. Think of it as being similar to WZ_OpenWindow; i.e. a window is opened and there are (presumably) controls in the window. You can then simply set up a loop and watch for a particular button press (i.e., IDOK, or IDCANCEL), at which point you’ll call WZ_CloseDialog. (See the MegaDraw template for a simple example of an about box using these functions)
Parameters

dlgname

A pointer to the string name of the dialog resource

method

One of:

WZ_MODAL

Cannot use any other window while dialog is open

WZ_MODELESS
Can stay open and be used with other windows.

Return Value

A handle to the window of the dialog box, which you’ll need in order to close it.

WZ_OpenFileDlg
Prototype

BOOL
WZ_OpenFileDlg (char *default_name, char *selected, DWORD filter_idx);

Description

This routine opens a standard “Open File” dialog box and waits for the user to select a file or cancel. The file types should be initialized before calling this routine (See WZ_InitFileTypes)

Parameters

default_name

A pointer to a string of text that is displayed as the default file name.

selected

A pointer to a character buffer that will hold the chosen file name.

filter_idx

A value indicating which of the file types the dialog box should default to. For example, if you initialized the file types with 3 different types of files (see WZ_InitFileTypes), filter_idx can be any value from 0 to 2.

Return Value

If the user specifies a filename and clicks the OK button, the return value is nonzero, otherwise it is zero.

WZ_OpenWindow

Prototype

HWND WZ_OpenWindow(int Size, char *Title, HWND Parent, void (*Regen)(HWND hwnd), int BitmapRegenFlag);

Description

WZ_OpenWindow creates a window and opens it. The first window you open in your application becomes your main application window. WinZilla assigns a global window handle to this window called WZ_Hwnd. The flags used to create the window are set by WinZilla, but in certain special cases can be altered by setting the global variables WZ_Style and WZ_ExStyle.

Parameters

Size

One of:

WZ_INVISIBLE
The window is opened but not visible

WZ_MAXIMIZE
The window opens maximized

WZ_MINIMIZE
The window opens minimized

WZ_DEFAULT
The window opens with default size and position

Title

The title to be displayed in the top of the window

Parent

The handle to the parent window. Should be NULL for the main app window.

Regen

A pointer to a Regen function, which is called automatically by WinZilla when the window needs re-painted. This can be WZ_NullFunc if you don’t want to specify a function.

BitmapRegenFlag

If TRUE, the window is automatically back-buffered (i.e., a chunk of memory is allocated for the window), and subsequent WinZilla GDI calls are rendered to both the buffer and to the actual window.

Return Value

A handle to the created window

WZ_Poly
Prototype

void WZ_Poly(HWND hwnd, POINT *pt, int count);

Description

Draws a filled polygon shape in a window. The current pen and fill settings for that window are used.

Parameters

hwnd

The window in which we’re drawing the polygon

pt

A pointer to an array of POINT data defining the vertices of the polygon

count

The number of elements in the POINT array

Return Value

None

WZ_PopupMenu

Prototype

int WZ_PopupMenu(int x, int y, char *options);

Description

WZ_PopupMenu creates a floating vertical column of menu options. The program will display these options and wait for the user to select one of them.

Parameters

x,y

The position of the upper-left corner of the popup menu

options

A pointer to a comma-delimited string of menu items, such as

“&Properties,&Options,&Settings,~,&Cancel”

The ‘&’ character underlines the character it precedes and makes it an ALT-<key> command. The ‘~’ character creates a separator bar.

Return Value

The menu item selected (1-n), or zero if the user cancels without making a selection

WZ_PositionWindow

Prototype

void WZ_PositionWindow(HWND hwnd, int code1, HWND hwnd1, int code2, HWND hwnd2, int code3, HWND hwnd3, int code4, HWND hwnd4);

Description

WZ_PositionWindow allows you to specify exact positioning parameters or positions relative to other windows. WinZilla will maintain this positioning whenever the parent resizes.

This function should only be used with special WinZilla macros, like this:

WZ_PositionWindow(icons,

WZ_EXACTLY_AT(0),

//x1

WZ_BELOW(more_icons),

//y1

WZ_EXACTLY_AT(WZ_GetWindowWidth(icons)),
//x2

WZ_ABOVE(status));

//y2

In this example, the window will always be position all the way to the left, just below the window called more_icons, and stretched so that the bottom is just above the status bar.

Parameters

The parameters are codes representing the corners of the window

[image: image3.png]

The codes are:

WZ_LEFT_OF(hwnd)

WZ_RIGHT_OF(hwnd)

WZ_ABOVE(hwnd)

WZ_BELOW(hwnd)

WZ_EXACTLY_AT(value)

Return Value

None

WZ_Print
Prototype

void WZ_Print(HWND hwnd, int x, int y, char *string, ...);

Description

Provides a simple, printf-style interface to text output in a window. The currently selected font is used to draw the text.

Parameters

hwnd

The handle of the window to draw text in

x,y

The coordinate in client space to draw the text

string

The formatted string to print

…

Optional arguments to use with formatting codes in the string (see printf for examples of how this works)

Return Value

None

WZ_PrintWindow (experimental)
Prototype

void WZ_PrintWindow(HWND hwnd);

Description

This function is currently still being improved, but you can use it. It opens a print dialog box, allows the user to adjust his printer settings, and, if print button is actually pressed (i.e., he doesn’t cancel), the window will be redrawn and output to the chosen printer. Please don’t write us saying ‘hey, this doesn’t work quite right’…we know.
Parameters

hwnd

The handle of the window to send to the printer

Return Value

None

WZ_PutPixel
Prototype

void WZ_PutPixel(HWND hwnd, int x, int y);

Description

Plots a single pixel in a window with the current pen color for that window.

Parameters

hwnd

The handle of the window to draw in

x,y

The coordinate in client space to plot the pixel

Return Value

None

WZ_ReadFontStyle
Prototype

BOOL WZ_ReadFontStyle(LOGFONT *font, char *filename);

Description

This function recalls a font into memory that was previously saved to disk using WZ_ReadFontStyle.

Parameters

font

A pointer to the LOGFONT in which you wish to store the incoming font

filename

The filename of the font definition, including extension

Return Value

TRUE if successful, FALSE if unsuccessful

WZ_Rectangle
Prototype

void WZ_Rectangle(HWND hwnd, int x1, int y1, int x2, int y2);

Description

Draws a rectangle defined by {x1,y1}-{x2,y2}. The current pen and fill settings for the window are used.

Parameters

hwnd

The handle of the window in which we’re rendering the rectangle

x1,y1,x2,y2

The coordinates for the opposing corners of the rectangle

Return Value

None

WZ_Redraw
Prototype

void WZ_Redraw(HWND hwnd);

Description

Invalidates a window, thereby forcing it to redraw itself. The contents of the window are NOT erased before the redraw takes place. (See also WZ_Regen and WZ_RegenWindow)

Parameters

hwnd

The handle of the window to invalidate

Return Value

None

WZ_Regen
Prototype

void WZ_Regen(HWND hwnd);

Description

Invalidates a window, thereby forcing it to redraw itself. The contents of the window are erased before the redraw takes place. (See also WZ_Redraw and WZ_RegenWindow)

Parameters

hwnd

The handle of the window to invalidate

Return Value

None

WZ_RegenWindow
Prototype

void WZ_RegenWindow(HWND hwnd);

Description

Forces the regen function of a window to be called.

Parameters

hwnd

The handle of the window to regenerate

Return Value

None

WZ_RoundRect
Prototype

void WZ_RoundRect(HWND hwnd, int x1, int y1, int x2, int y2, int xsize, int ysize);

Description

Draws a rounded rectangle defined by {x1,y1}-{x2,y2}. Xsize and ysize define the shape of the corner ellipses. The current pen and fill settings for the window are used.

Parameters

hwnd

The handle of the window in which we’re rendering the rounded rectangle

x1,y1,x2,y2

The coordinates for the opposing corners of the rectangle

xsize, ysize

The x and y radius for the ellipses the define the corners of the rectangle

Return Value

None

WZ_SaveFileDlg
Prototype

BOOL
WZ_SaveFileDlg (char *default_name, char *selected, DWORD filter_idx);

Description

This routine opens a standard “Save File” dialog box and waits for the user to select a file, enter a filename, or cancel. The file types should be initialized before calling this routine (See WZ_InitFileTypes)

Parameters

default_name

A pointer to a string of text that is displayed as the default file name.

selected

A pointer to a character buffer that will hold the chosen file name.

filter_idx

A value indicating which of the file types the dialog box should default to. For example, if you initialized the file types with 3 different types of files (see WZ_InitFileTypes), filter_idx can be any value from 0 to 2.

Return Value

If the user specifies a filename and clicks the OK button, the return value is nonzero, otherwise it is zero.

WZ_SetAutoScroll
Prototype

void WZ_SetAutoScroll(HWND hwnd, BOOL state);

Description

Controls the state of scroll-bars on a WinZilla-created window.

Parameters

hwnd

The handle of the window to effect

state

If TRUE, scroll bars are placed on the window. By default, these scroll bars map the window to the physical dimensions of your display.

If FALSE, the scroll bars are removed from your window.

Return Value

None

WZ_SetButtonState
Prototype

void WZ_SetButtonState(HWND parent, int id, int value);

Description

Forcibly set the appearance of an icon or button to either pressed or released. Note that this only changes the appearance, and does not simulate a button actually being selected by the user.

Parameters

parent

The handle of the parent or owner window

id

The return value or ID of the button (see the DrawIt example)

value

TRUE for pressed, FALSE for released

Return Value

None

WZ_SetCursor
Prototype

void WZ_SetCursor(char *cursor_rsc);

Description

Changes the graphic used for the mouse cursor.

Parameters

cursor_rsc

The name of the cursor resource (a string name), or NULL to set it back to the normal arrow pointer.

Return Value

None

WZ_SetFillColor
Prototype

void WZ_SetFillColor(HWND hwnd, COLORREF color);

Description

Sets the current fill color for a window. All subsequent drawing commands which utilize a fill color will use this color.

Parameters

hwnd

The handle of the window to effect

color

The new fill color for that window

Return Value

None

WZ_SetFillPattern
Prototype

void WZ_SetFillPattern(HWND hwnd, HBITMAP bitmap);

Description

Sets the current fill pattern for a window. All subsequent drawing commands which utilize a fill will use this fill pattern.

Parameters

hwnd

The handle of the window to effect

bitmap

The new fill pattern for that window

Return Value

None

WZ_SetMenubarFromResource
Prototype

void
WZ_SetMenubarFromResource(HWND owner, char *resource);

Description

Assigns a resource-defined pull-down menu to a window. (See also WZ_Menubar for manually creating menu bars).

Parameters

owner

The handle of the window to receive the menu bar
resource

The name of the menu bar resource (must be a string)

Return Value

None

WZ_SetPenColor
Prototype

void WZ_SetPenColor(HWND hwnd, COLORREF color);

Description

Sets the current pen color for a window. All subsequent drawing commands will use this color.

Parameters

hwnd

The handle of the window to effect

color

The new pen color for that window

Return Value

None

WZ_SetPenWidth
Prototype

void WZ_SetPenWidth(HWND hwnd, int width);

Description

Sets the current pen width (thickness) for a window. All subsequent drawing commands will use this pen width.

Parameters

hwnd

The handle of the window to effect

color

The new pen width for that window

Return Value

None

WZ_SetWindowSize
Prototype

void WZ_SetWindowSize(HWND hwnd, int width, int height);

Description

Forcible alter the physical size of a window.

Parameters

hwnd

The handle of the window to effect

width, height

The new dimensions for the window.

Return Value

None

WZ_SetWindowState
Prototype

void WZ_SetWindowState(HWND hwnd, int state_flags);

Description

Sets the state flags for a WinZilla-defined window

Parameters

hwnd

The handle of the window to effect

state_flags

The WinZilla flags that define a window’s behavior. Currently the only flag supported by this function is WZ_OUTPUT_ONLY, which will cause any of the WZ_Get? routines to not recognize the window (i.e., the user can’t click in the window).

Return Value

None

WZ_SetWinView
Prototype

int WZ_SetWinView(HWND hwnd, int x1, int y1, int x2, int y2, int *cx, int *cy);

Description

Alters the mapping of the scroll bars assigned to a window

Parameters

hwnd

The handle of the window to effect

x1, y1

The upper-left corner coordinate of your virtual window

x2, y2

The lower-right corner coordinate of your virtual window

cx, cy

Pointers to integers that will receive the current {left,top} value of your virtual window as the scroll bars are moved by the user. These variables must be either static or global.

Return Value

If the window can’t be found the return value is WZ_WINDOW_NOT_FOUND. Otherwise, the return value is the index of the window.

WZ_SetWriteMode
Prototype

void WZ_SetWriteMode(HWND hwnd, int mode);

Description

Sets the current write mode for a window. Refer to the standard ROP codes (such as R2_COPYPEN or R2_XORPEN) for a list of valid modes.

Parameters

hwnd

The handle of the window to effect

mode

The new raster operation mode for the window

Return Value

None

WZ_StartDrawing
Prototype

void WZ_StartDrawing(HWND hwnd);

Description

Puts WinZilla in a mode which allows complex graphics to render much quicker. Note that this only works on buffered windows (See WZ_OpenWindow for details). It works by rendering only to the back buffer until a corresponding WZ_StopDrawing is encountered, at which point the contents of the window are displayed. You will definitely notice a performance improvement.

(Important note: WZ_StartDrawing/WZ_StopDrawing can NOT be used inside a window’s regen function)

Parameters

hwnd

The handle of the window in which the command will have effect

Return Value

None

WZ_StopDrawing
Prototype

void WZ_StopDrawing(HWND hwnd);

Description

Ends the mode entered with WZ_StartDrawing, and redraws the contents of the window.

(Important note: WZ_StartDrawing/WZ_StopDrawing can NOT be used inside a window’s regen function)

Parameters

hwnd

The handle of the window in which the command will have effect

Return Value

None

WZ_StretchBitmap
Prototype

void WZ_StretchBitmap(HWND hwnd, HBITMAP hbitmap, int x1, int y1, int x2, int y2);

Description

Draws a bitmap stretched to forcibly fit the rectangle defined by {x1,y1}-{x2,y2}.

Parameters

hwnd

The handle of the window in which we’re drawing the bitmap

hbitmap

The handle of the bitmap to be drawn (see also WZ_LoadBitmap)

x1,y1,x2,y2

The coordinates for the bounding rectangle that defines the size of the drawn bitmap

Return Value

None

WZ_UpdateScrollbar
Prototype

void WZ_UpdateScrollbar(HWND hwnd);

Description

This will forcibly alter the scroll bars of a window to match the windows scroll bar coordinate values. This can only be used if you’ve used WZ_SetWinView on a window. For example, if you alter the cx,cy variables you provided in your call to WZ_SetWinView, a call to this function will force the scroll bars of that window to reflect the changed values.

Parameters

hwnd

The handle of the window to effect

Return Value

None

WZ_WriteFontStyle
Prototype

BOOL WZ_WriteFontStyle(LOGFONT *font, char *filename);

Description

This function was designed to make it easy to remember font settings chosen by your users. Once a font is defined (i.e., usually by using WZ_ChooseFont), you can easily write the font definition to a file for later use. See also WZ_ReadFontStyle.

Parameters

font

A pointer to the LOGFONT you wish to write out to disk

filename

The filename of the written file, including any extension you want to use.

Return Value

TRUE if successful, FALSE if unsuccessful

� EMBED PBrush ���

� EMBED PBrush ���

x1,y1

x2,y2

_967487597

