�

Disclaimer

Information in this document is subject to change without notice. Companies, names, and data used in examples (other than those standard to the machine used for the manual’s development) are fictitious. This document may be not be distributed outside of this package without the express written permission of Global Constructs. Global Constructs, its logos and slogans are trademarks of Global Constructs. Microsoft, Windows, and Windows 95 are trademarks of Microsoft Corporation. Other trademarks, trade names, service marks, or service names belong to their respective companies. Global Constructs denies any proprietary interest in trademarks and trade names other than its own.

Copyright © 1997, by Global Constructs. All rights reserved.

Memory Library Programming Toolkit

Version 2.05

A memory based file system supporting normal,

stacked, and synchronized files.

by Global Constructs.

Use a Courier 10 point font for

optimal viewing of this file.

�Table of Contents

�TOC \f�

Introduction	1

Installation	1

Contents	1

Notices and Legal Information	2

Freeware	2

Distribution	2

Warranty and Licensing Information	2

Why Should I Register?	4

Additional Licensing Information	4

Ordering the Registered Version	4

Technical Support	5

Reporting Bugs	5

How To Use Product	6

Library Reference	7

errmem	8

ftruncate	9

mclose	10

mcreat	11

mdup	12

meof	13

mheapsize	14

minfo	15

mopen	16

mpeek	18

mpull	19

mpush	20

mread	21

mseek	22

msetsize	23

mstat	24

mstrerr	25

msync	26

mtell	27

mtruncate	28

mwrite	29

Version History	30

Performance Tests	31

�

�Introduction

The Memory Library Programming Toolkit is a versatile module for C and C++ programmers who require a fast and simple to use memory or stacked based file system. The Memory Library provides many advantages over disk based temporary files or custom coding of stacked based arrays.

Faster access to temporary files than disk based temporary files. Many memory files of any type may be opened and accessible at any given time.

Function calls with a POSIX-like naming convention provide quick understanding and porting from similarly called POSIX routines.

Full support for file access and manipulation using almost 20 functions.

Quick and easy use of first-in/first-out (FIFO) and first-in/last-out (FILO) memory file types (note an FILO file is equivalent to LIFO). Avoids the work of custom designing an array-based FIFO or FILO stack each time that you need one.

A memory file may be opened and pre-loaded with a disk based file, permitting continuation from a pre-saved point.

The Memory Library provides customizable synchronization of its memory files to a disk-based file to provide an automated method of protecting information.

Memory files may be created with no filename for easier implementation of a temporary file.

Memory files may be limited to a maximum file size by you for those instances where you do not wish them to consume too much memory.

Stacked memory files (FIFO/FILO) dynamically grow and shrink thereby only using as much memory as is necessary to maintain the file. Stack overflows are also avoided unless an Out Of Memory condition is reached naturally or by a maximum file size limit being set.

Normal random access memory files are dynamic in size, using only as much memory as what is required to maintain the file.

Disk caching is reduced since the Memory Library uses no form of caching for its memory files.

Version 2.05 of the Memory Library Programming Toolkit has been tested with Watcom C/C++ 10.6, Borland C++ 4.02, Code Warrior 6, Code Warrior Gold 11, Gnu C compiler with FreeBSD versions 2.1.5r and 2.2a.

Installation

See the file install.txt for instructions on installing the Memory Library Programming Toolkit.

Contents

See the file contents.txt for a list of files included in the Memory Library Package.

�

Notices and Legal Information

Freeware

This program is Freeware, copyrighted, and not in the Public Domain. This product, including the source code, may be freely used by an individual for personal, non-commercial purposes. Use of this product within a business, for personal or commercial use, or for commercial purposes requires the purchase and registration of the product. Use of this product outside of the limitations specified here are in violation of the copyright. Please support this product by becoming a registered user.

Distribution

This freeware version may be distributed in its entirety, without the express written permission of Global Constructs. It may be freely distributed in its entirety for non-commercial purposes. Commercial distribution of this product requires the express written permission of Global Constructs.

This freeware product is for personal use only. No product, program, or library created with the use of this freeware product may be distributed freely or otherwise.

In no way does the purchase of this freeware product as part of a shareware/freeware collection from a distributor or any other agent provide or guarantee a registration of the product with Global Constructs. Any registration or registered support of this product is provided to registered users only. To become a registered user see the section Why Should I Register and the order form in the file order.txt.

Warranty and Licensing Information

By using the software, the licensee agrees to abide by the copyright law and all other applicable laws of the United States. Including, but not limited to, export control laws, and the terms of this license. Global Constructs shall have the right to, terminate this license immediately by written notice upon the licensee's breach of, or non�compliance with, any of its terms. The licensee may be held legally responsible for any copyright infringement that is caused or encouraged by the licensee's failure to abide by the terms of this license.

THIS SOFTWARE AND ACCOMPANYING WRITTEN MATERIALS IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE GLOBAL CONSTRUCTS DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR�FREE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE SOFTWARE IS WITH LICENSEE.

IN NO EVENT WILL GLOBAL CONSTRUCTS BE LIABLE TO LICENSEE OR ANY THIRD PARTY FOR ANY DAMAGES INCLUDING ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRODUCT EVEN IF GLOBAL CONSTRUCTS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

�

ACKNOWLEDGMENT

BY USING THE FREEWARE VERSION OF THE MEMORY LIBRARY PROGRAMMING TOOLKIT YOU ACKNOWLEDGE THAT YOU HAVE READ THIS LIMITED WARRANTY, UNDERSTAND IT AND AGREE TO BE BOUND BY THOSE TERMS AND CONDITIONS AS SET FORTH IN THIS WARRANTY AND LICENSE.

After payment is received by Global Constructs, the use of this software is limited to use on only one personal computer or workstation which is not used as a server. An additional payment is required for use on each additional personal computer or workstation. For information on a site license contact Global Constructs at sales@globalconstructs.com or the following address.

	Global Constructs

	P.O. Box 200305

	Arlington, TX 76006

	(817) 275-5114

Any use of this product if in violation of the above restrictions is not protected nor provided for by the license.

�

Why Should I Register?

Registration of the Memory Library Programming Toolkit provides the following benefits.

1.	You are planning to use the product within a commercial product, environment, or on a network server.

2.	All programs created with the registered version of the Memory Library Programming Toolkit are royalty free.

3.	Technical support is available by email, phone, or postal mail.

4.	Technical support is provided for a period of six (6) months from the date of registration of the Memory Library Programming Toolkit.

Additional Licensing Information

The following applies to the registered version of the product and is in addition to that information provided in the Warranty and Licensing Information section, except where this information replaces the aforementioned section. If any condition of this agreement is held by a court of competent jurisdiction to be invalid, void or unenforceable, the rest of the agreement shall remain in full force and effect and shall in no way be affected, impaired or invalidated.

After payment is received by Global Constructs, the use of this software is limited to use on only one personal computer or workstation which is not used as a server. An additional payment is required for use on each additional personal computer or workstation. For information on a site license contact Global Constructs.

This product may be used royalty free for the purposes of using its functionality within a program. This product may not be distributed or sold as part of a development package without the express permission of Global Constructs. This includes but is not limited to its use in a dynamic or shared run-time library which is made available to consumers or developers.

You must retain all copyright or other notices marked within the product and on all copies and programs developed with this product.

Ordering the Registered Version

To order the registered version see order.txt.

�

Technical Support

Technical support for the Memory Library Programming Toolkit is provided to all users via our email address.

support@globalconstructs.com

Registered users may also contact us by phone or regular postal mail at the following address.

Global Constructs

Attn. Technical Support

P.O. Box 200305

Arlington, TX 76006

(817) 275-5114

Be sure to include your registration number on correspondence to ensure prompt service. The phone number provided is equipped with voice mail. If support does not answer then follow the directions provided to leave a message and we will return your call.

Reporting Bugs

In the event you discover a bug or wish to comment on the product, please complete the information requested in bugform.txt and send it to us, or use the Technical Report Form located at our web site: www.globalconstructs.com. Bug fixes will be considered on the current version only. We will make an effort to direct you to any existing patches still available for any older version.

�

How To Use Product

The Memory Library Programming Toolkit is a group of source code and header files designed to enhance your programming effort. The toolkit is equipped with an extensive set of functions which enable the programmer to quickly and effortlessly create stack based files or normal random access files in memory. This library is designed for the C programmer, with extensions permitted for the C++ user.

To use the functions in the library you must include the file memfile.h in any source files that you wish to take advantage of the Memory Library Programming Toolkit. A line such as,

#include memfile.h

will suffice. Be sure to include the path to the header in your include path before compiling.

The included functions are designed in the same format and operation as their POSIX equivalents. The following table demonstrates this.

Memory Lib�

POSIX�

Memory Lib�

POSIX��

mclose�

close�

mpush�

No Equivalent��

mcreat�

creat�

mread�

read��

mdup�

dup�

mseek�

lseek��

meof�

eof�

msetsize�

No Equivalent��

mheapsize�

No Equivalent�

mstat�

stat��

minfo�

No Equivalent�

mstrerr�

strerr��

mopen�

open�

msync�

No Equivalent��

mpeek�

No Equivalent�

mtell�

tell or lseek(fh,0,SEEK_CUR)��

mpull�

No Equivalent�

mtruncate�

ftruncate��

�

�

mwrite�

write��

One other function that is not listed here is available in the static library in some systems. The function ftruncate() is used by the memory library. For compatibility see the appropriate doc page in the following Library Reference section.

There is also a replacement error control variable to errno. Any errors which occur in the Memory Library functions will return an error in errmem.

�

Library Reference

The following section is provided as a library reference to the functions, error variable, and constants available in this library.

The library is listed alphabetically with one document per page. The function pages will list the function, a description of its operation, its return value and parameters, the errors it generates if any, and any known bugs or limitations (KBL) at this time. The use of constants are also listed as appropriate for each function.

The following type definitions are used within memfile.h and throughout this document.

typedef signed long		int32;

typedef unsigned long		int32u;

typedef signed short		int16;

typedef unsigned short		int16u;

�

errmem

Format	int16 errmem;

The variable errmem is used for passing all error conditions from the Memory Library to the program. It is unnecessary to declare errmem, it has already been declared in the library. An external reference is defined in memfile.h.

The following error values may be set in the variable errmem. When errmem equals zero no error has occurred.

accessModeConflict	More than one of the following is being attempted for the same file: I_RDONLY, I_WRONLY, I_RDWR

badFileHandle		Bad or invalid file handle

diskReadError		Error occurred while loading disk based file

exclAccessDenied		File already open with another file handle

exclCreateFailed		File exists and cannot be created for exclusive access

fileDoesNotExist		File to be opened does not exist

fileModeConflict		More than one file type is set

fileNotReadable		File mode or access does not permit reading

fileNotWritable		File mode or access does not permit writing

invalidBufferPtr		NULL pointer provided on mread, mwrite, mpush, or mpull

invalidParameter		Invalid parameter value set

loadFailFileExists	Disk file failed to load due to existing memory file

loadFailModeConflict	Disk file failed to load due to conflict with its file mode (read only, write only, etc.)

maxFileSizeExceeded	Maximum file size limitation exceeded

noTruncOnRead		file truncation is not permitted on a read only file

outOfMemory			Insufficient memory to perform operation

pullNotAllowed		pull not permitted on normal file, use read instead

stackFileDup		Stacked memory files are allowed one file handle only

stackFileSeek		Stacked files may get current position only

stackFileRead		Read not permitted on stacked file, use pull instead

syncDiskFileOnly		Sync on opening of non�disk file attempted

syncSeekFailure		Seek on disk based sync file failed on synchronization

syncWriteFailure		Write on disk based sync file failed to synchronize

seekPastBeginning		Seek attempted to before beginning of the file

tooManyOpenHandles	all available file handles are assigned

�

ftruncate

int ftruncate (int handle, off_t newsize)

Truncates file to new size if the file was larger than newsize. This is included on those systems which do not support ftruncate.

Parameters

handle	File handle number

newsize	Size to change file to if larger

Returns zero if successful, otherwise �1 and errno is set.

Errors

EACCES	Access denied to file.

EBADF	Bad file handle number.

ENOSPC	Not enough space on device to perform operation.

KBLs	None.

�

mclose

int16 mclose (int16 handle)

Closes memory file and releases all memory. It will close any related disk based file which is synchronized.

Parameter

handle		File handle number.

Returns zero if successful. Otherwise, it returns �1 and errmem is set to indicate the error.

Errors

badFileHandle

syncSeekFailure

syncWriteFailure

KBLs	Closure of the last file handle for the memory file removes it from memory losing all information.

�

mcreat

int16 mcreat (int16 handle, int16u mode)

Creates a memory file and sets it to size zero. It is implemented as a macro calling mopen() as follows.

#define mcreat(a,b)	mopen(b, I_WRONLY | I_CREAT | I_TRUNC, c)

See mopen for further detail.

�

mdup

int16 mdup (int16 handle)

Duplicates file handle given as parameter and returns new file handle which also points to the memory file.

Parameter

handle		File handle number.

Returns the new file handle, or �1 on an error and errmem is set.

Errors

badFileHandle

stackFileDup

exclAccessDenied

outOfMemory

tooManyOpenHandles

KBLs	None.

�

meof

int16 meof (int16 handle)

Tests for end of file for memory file.

Parameter

handle		File handle number.

Returns 1 if at end of file, 0 if not at end of file, and �1 on an error and errmem is set.

Error

badFileHandle

KBLs	None.

�

mheapsize

void mheapsize (int32 heapsize)

Changes the default file allocation size. To reset the heap size to the default, set the parameter to zero (0L). Heap size requests of less than zero set the heap size to the default.

Parameter

heapsize	Size in bytes to set allocation to, four byte boundary aligned.

Void return.

KBLs	The function will set the heap size to the next available four byte boundary size if a non�four byte boundary value is provided.

�

minfo

fileInfo *minfo (int16 handle)

Gets detailed information on a particular memory file. This routine allocates space for this information so be sure to call free(fileInfo *) when finished. The fileInfo structure is defined as follows.

typedef struct _fileinfo {

int32 filesize;		/* size of file in bytes */

int32 maxfilesize;	/* maximum file size to write */

int32 totalclusters;	/* total memory reserved for file */

int32u filemode;		/* type of memory file */

int16u syncrate;		/* sync rate for the memory file */

int16u synccount;	/* # of writes before synchronization */

int16 numsegments;	/* number of memory segments for file */

} fileInfo;

Parameter

handle		File handle number.

Returns a pointer to a fileInfo structure, or NULL on an error with errmem set.

Errors

badFileHandle

outOfMemory

KBLs	None.

�

mopen

int mopen (const char *path, int16 access, int16u mode)

Opens a memory file for read, write, append, and create access.

Parameters

path		A NULL pointer may be passed for the filename, doing so will create a file with no name. Multiple uses of this method will create multiple files, not multiple file handles to the same file.

access	The access mode is established by a combination of the bits defined as follows.

I_RDONLY	Access the memory file for read access only

I_WRONLY	Access the memory file for write access only

I_RDWR	Access the memory file for read and write access

I_APPEND	Writes will occur at the end of the memory file

I_CREAT	Create the memory file if it does not already exist

I_TRUNC	Truncate the memory file

I_BINARY	Open the file in binary mode, which does not change the data on a read/write or push/pull. This is the default access mode whether or not it has been specified.

I_EXCL	Open a memory file for exclusive access. If the file exists and then the open will fail (since there is a file handle assigned to that file already).

I_LOAD	Create a memory file and load a disk based file into it. If the memory file exists then the open will fail. I_CREAT is set by default when I_LOAD is set, whether or not I_CREAT has been specified.

mode	The file mode permissions for the file are specified by an optional argument as a combination of bits as follows. The mode parameter is ignored unless the access mode bit I_CREAT or I_LOAD is set and the file does not exist.

M_IREAD	Permit read access to the created memory file

M_IWRITE	Permit write access to the created memory file

M_IFIFO	Set file type as a first�in/first�out memory file

M_IFILO	Set file type as a first�in/last�out memory file

A stacked file (FIFO or FILO) may be opened with one I_RDWR file handle or one I_RDONLY and I_WRONLY file handle only. Note that multiple stacked memory files may be open at one time.

Note that use of a NULL pointer in the filename parameter is not POSIX compliant if you intend on changing the memory file code to POSIX code. File types of FIFO and FILO will produce file types normal for your system if NOMEMFILE_H is defined.

�

mopen (continued)

Returns a handle for the file. When an error occurs while opening the file, �1 is returned and the variable errmem is set. A disk file loaded as a memory file can return a file handle and set errmem. This can occur in such cases as a partial read or disk I/O error.

Errors

fileModeConflict

accessModeConflict

loadFailFileExists

loadFailModeConflict

exclCreateFailed

exclAccessDenied

fileNotReadable

fileNotWritable

stackFileDup

noTruncOnRead

fileDoesNotExist

syncDiskFileOnly

outOfMemory

diskReadError

tooManyOpenHandles

KBLs	'path' is stored as a filename without regard for current paths or other conventions.

Wildcards and special characters are considered valid characters in filename.

All files are handled as binary only.

Shared memory files are not supported.

�

mpeek

int32 mpeek (int16 handle, void *buffer, int32u len)

Reads a memory block from the beginning of the stack for FIFO operations, the end of the stack for FILO operations, or the current file position for normal files changing the file position or size.

Parameters

handle	File handle number

buffer	Pointer to input buffer

len		Length of record to read into the buffer

Returns the number of bytes read from the file. When there is no error, this is the number given by the len argument. When the end of the file is encountered before the read completes, the return value will be less than the number of bytes requested. A value of �1 may be returned in the case of some input errors. When an error has occurred, errmem contains a value indicating the type of error that has been detected.

Errors

badFileHandle

invalidBufferPtr

fileNotReadable

KBLs	As mopen().

�

mpull

int32 mpull (int16 handle, void *buffer, int32u len)

Reads a memory block from the beginning of the stack for FIFO operations or the end of the stack for FILO operations, reducing the size of the stack file in the process.

Parameters

handle	File handle number

buffer	Pointer to input buffer

len		Length of record to read into the buffer

Returns the number of bytes read from the file. When there is no error, this is the number given by the len argument. When the end of the file is encountered before the read completes, the return value will be less than the number of bytes requested. A value of �1 may be returned in the case of some input errors. When an error has occurred, errmem contains a value indicating the type of error that has been detected.

Errors

badFileHandle

invalidBufferPtr

pullNotAllowed

fileNotReadable

syncSeekFailure

syncWriteFailure

KBLs	As mopen().

�

mpush

int16 mpush (int16 handle, void *buffer, int32u length)

Writes to the end of a stacked memory file. It is implemented as a macro calling mwrite() as follows.

#define mpush	mwrite

See mwrite for further detail.

�

mread

int32 mread (int16 handle, void *buffer, int32u len)

Reads a memory block from the current file position.

Parameters

handle	File handle number.

buffer	Pointer to buffer to read record into.

len		Length of record to read.

Returns the number of bytes read from the file. When there is no error, this is the number given by the len argument. When the end of the file is encountered before the read completes, the return value will be less than the number of bytes requested. A value of �1 may be returned in the case of some input errors. When an error has occurred, errmem contains a value indicating the type of error that has been detected.

Errors

badFileHandle

invalidBufferPtr

stackFileRead

KBLs	As mopen().

�

mseek

int32 mseek (int16 handle, int32 offset, int16 whence)

Sets file position of memory file.

Parameters

handle	File handle numbers.

offset	Value to shift file position depending upon whence value.

whence	Position from which to start offset. Valid values are

SEEK_SET	Offset from start of memory file

SEEK_CUR	Offset from current file position

SEEK_END	Offset from end of memory file

Returns file position if successful. Otherwise, it returns �1 and errmem is set to indicate the error.

Errors

badFileHandle

invalidParameter

stackFileSeek

seekPastBeginning

KBLs	For FIFO and FILO file types, mseek(fh,0,SEEK_CUR) or mtell(fh) are only allowed.

�

msetsize

int16 msetsize(int16 handle, int32 maxsize)

Sets the maximum size a file may reach. mwrite() and mpush() will not exceed this amount if set, although they can write to an existing file which exceeds this limit if the write does not extend the file. mread(), mseek(), and mpull() are not affected by this limit in any way.

Parameters

handle	The file handle on which to set a file size limit.

maxsize	The maximum file size in bytes to which the file may be extended. Setting maxsize to zero will disable the file size limit for that file handle.

Returns zero if successful, otherwise �1 on an error and errmem is set.

Errors

badFileHandle

invalidParameter

KBLs	None.

�

mstat

int16 mstat (const char *path, struct stat *buf)

Provides statistical information on a memory file. For more detailed information used the routine minfo().

Parameters

path		Path and file name of memory file on which to get statistics.

buf		Pointer to valid memory buffer.

Returns zero when the information is successfully obtained, �1 on an error with errmem set.

Errors

fileDoesNotExist

invalidBufferPtr

KBLs	This function will only get the file size and the hard links used by the file.

�

mstrerr

const char *mstrerror(int16 errnum)

mstrerr maps the error number contained in errmem to an error message string.

Parameter

errmem	The number of the error usually returned by errmem.

Returns a pointer to a string containing the requested error message. The pointer is to a constant string and should not be modified by the calling routine.

KBLs	None.

�

msync

int16 msync (int16 handle, int16u num)

Set the number of write operations to occur between each synchronization with the corresponding disk file.

Parameters

handle	File handle number

num		Number of write operations between synchronizations. The default is 100, setting num to zero will disable synchronization, clear the M_ISYNC mode flag for the file, and close the disk based file.

Returns zero if successful, otherwise �1 and errmem is set

Errors

badFileHandle

KBLs	None.

�

mtell

int16 mtell (int16 handle)

Returns current pointer position for file handle. It is implemented as a macro calling mseek() as follows.

#define mtell(a)		mseek(a, 0, SEEK_CUR)

See mseek for further detail.

�

mtruncate

int16 mtruncate (int16 handle, int32 newsize)

Truncates file to new size if the file was larger than newsize

Parameters

handle	File handle number

newsize	Size to change file to if larger

Returns zero if successful, otherwise �1 and errmem is set.

Errors

badFileHandle

invalidParameter

fileNotWritable

syncSeekFailure

syncWriteFailure

KBLs	None.

�

mwrite

int mwrite(int handle, void *buffer, unsigned len)

Writes a memory block at the current file position.

Parameters

handle	File handle number

buffer	Pointer to data buffer of outputted information

len		Length of block to write from the buffer

Returns the number of bytes written to the file. When there is no error, this is the number given by the len argument. In the case of an error, such as there being no space available to contain the file data, the return value will be less than the number of bytes transmitted. A value of �1 may be returned in the case of some output errors. When an error has occurred, errmem contains a value indicating the type of error that has been detected.

Errors

badFileHandle

invalidBufferPtr

fileNotWritable

maxFileSizeExceeded

syncSeekFailure

syncWriteFailure

outOfMemory

KBLs	As mopen(). If M_ISYNC option is used and an error occurs in the '\0' byte fill for a file position past the end of the file, then the sync counter will not be decremented for that one memory file write operation.

�

Version History

Read the file history.txt for the version development of this product.

�

Performance Tests

The following results were obtained with the performance program (memperf.c) which writes 10,000 1K byte records, and then reads them back. Each test was performed using a temporary file in the temporary directory of a hard drive, an array of 10,000 elements of size 1K bytes each to emulate a file, a normal random access memory file, a stack based FIFO memory file, and a stack based FILO/LIFO memory file.

The source for the performance program used is included with the registered version of the Memory Library Programming Toolkit.

Processor: Pentium-60	Operating System: Windows 95	RAM: 48 MB

Benchmark times in seconds.

 Create Write Read Close Total

Temp Dir File 0.000 9.210 4.400 0.000 13.610

Array 1.630 0.080 0.050 0.000 1.760

Memory Files

Normal 0.000 1.500 0.100 0.000 1.600

FIFO 0.000 1.510 0.630 0.000 2.140

FILO 0.000 1.500 0.630 0.000 2.130

Processor: Pentium-60	Operating System: DOS 32-bit	RAM: 48 MB

Benchmark times in seconds.

 Create Write Read Close Total

Temp Dir File 0.060 16.250 129.900 0.170 146.380

Array 0.330 0.060 0.110 0.000 0.500

Memory Files

Normal 0.000 0.660 0.060 0.000 0.720

FIFO 0.000 0.720 0.550 0.000 1.270

FILO 0.000 0.600 0.540 0.000 1.140

Processor: 486DX2-80	Operating System: Windows 95	RAM: 16 MB

Benchmark times in seconds.

 Create Write Read Close Total

Temp Dir File 0.030 26.220 28.980 0.020 55.250

Array 1.400 0.090 0.100 0.000 1.590

Memory Files

Normal 0.000 1.210 0.290 0.000 1.500

FIFO 0.000 1.210 1.090 0.000 2.300

FILO 0.000 1.230 1.070 0.000 2.300

Processor: 486DX2-80	Operating System: DOS 32-bit	RAM: 16 MB

Benchmark times in seconds.

 Create Write Read Close Total

Temp Dir File 0.030 279.300 132.420 0.330 412.050

Array 0.550 0.050 0.060 0.000 0.660

Memory Files

Normal 0.000 0.390 0.160 0.000 0.550

FIFO 0.000 0.330 0.830 0.000 1.160

FILO 0.000 0.380 0.880 0.000 1.260

�

Performance Tests (continued)

Processor: Pentium-133	Operating System: BSD 2.2a	RAM: 32 MB

Benchmark times in seconds.

 Create Write Read Close Total

Temp Dir File 0.000 0.617 0.578 0.000 1.195

Array 0.203 0.023 0.016 0.008 0.250

Memory Files

Normal 0.000 0.226 0.031 0.023 0.280

FIFO 0.000 0.219 0.289 0.000 0.508

FILO 0.000 0.219 0.281 0.016 0.516

Processor: Pentium-90	Operating System: BSD 2.1.5r	RAM: 8 MB

Benchmark times in seconds.

 Create Write Read Close Total

Temp Dir File 0.000 1.969 1.086 0.000 3.055

Array 0.672 0.312 0.219 0.008 1.211

Memory Files

Normal 0.000 0.773 0.125 0.008 0.906

FIFO 0.000 0.789 0.884 0.008 1.681

FILO 0.000 0.773 0.711 0.000 1.484

�PAGE�31�

