
B.2 Key to Opcode Descriptions
This appendix also provides the opcodes which NASM will generate for each form
of each instruction. The opcodes are listed in the following way:

l A hex number, such as 3F, indicates a fixed byte containing that number.

l A hex number followed by +r, such as C8+r, indicates that one of the
operands to the instruction is a register, and the `register value' of that register
should be added to the hex number to produce the generated byte. For
example, EDX has register value 2, so the code C8+r, when the register operand
is EDX, generates the hex byte CA. Register values for specific registers are
given in Section B.2.1.

l A hex number followed by +cc, such as 40+cc, indicates that the instruction
name has a condition code suffix, and the numeric representation of the
condition code should be added to the hex number to produce the generated
byte. For example, the code 40+cc, when the instruction contains the NE
condition, generates the hex byte 45. Condition codes and their numeric
representations are given in Section B.2.2.

l A slash followed by a digit, such as /2, indicates that one of the operands to
the instruction is a memory address or register (denoted mem or r/m, with an
optional size). This is to be encoded as an effective address, with a ModR/M
byte, an optional SIB byte, and an optional displacement, and the spare
(register) field of the ModR/M byte should be the digit given (which will be
from 0 to 7, so it fits in three bits). The encoding of effective addresses is
given in Section B.2.3.

l The code /r combines the above two: it indicates that one of the operands is a
memory address or r/m, and another is a register, and that an effective address
should be generated with the spare (register) field in the ModR/M byte being
equal to the "register value" of the register operand. The encoding of effective
addresses is given in Section B.2.3; register values are given in Section B.2.1.

l The codes ib, iw and id indicate that one of the operands to the instruction is
an immediate value, and that this is to be encoded as a byte, little-endian word
or little-endian doubleword respectively.

l The codes rb, rw and rd indicate that one of the operands to the instruction is
an immediate value, and that the difference between this value and the address
of the end of the instruction is to be encoded as a byte, word or doubleword
respectively. Where the form rw/rd appears, it indicates that either rw or rd
should be used according to whether assembly is being performed in BITS 16
or BITS 32 state respectively.

l The codes ow and od indicate that one of the operands to the instruction is a

Spring 2002 Laboratory Notes: Computer Engineering II
Prev Appendix B. Intel x86 Instruction Reference Next

Page 1 of 5Key to Opcode Descriptions

2005-12-08http://courses.ece.uiuc.edu/ece390/archive/spr2002/books/labmanual/inst-ref-opcode-...

http://courses.ece.uiuc.edu/ece390/archive/spr2002/books/labmanual/inst-ref-opcode

reference to the contents of a memory address specified as an immediate
value: this encoding is used in some forms of the MOV instruction in place of
the standard effective-address mechanism. The displacement is encoded as a
word or doubleword. Again, ow/od denotes that ow or od should be chosen
according to the BITS setting.

l The codes o16 and o32 indicate that the given form of the instruction should
be assembled with operand size 16 or 32 bits. In other words, o16 indicates a
66 prefix in BITS 32 state, but generates no code in BITS 16 state; and o32
indicates a 66 prefix in BITS 16 state but generates nothing in BITS 32.

l The codes a16 and a32, similarly to o16 and o32, indicate the address size of
the given form of the instruction. Where this does not match the BITS setting,
a 67 prefix is required.

B.2.1 Register Values
Where an instruction requires a register value, it is already implicit in the encoding
of the rest of the instruction what type of register is intended: an 8-bit general-
purpose register, a segment register, a debug register, an MMX register, or
whatever. Therefore there is no problem with registers of different types sharing
an encoding value.

The encodings for the various classes of register are:

8-bit general registers

AL is 0, CL is 1, DL is 2, BL is 3, AH is 4, CH is 5, DH is 6, and BH is 7.

16-bit general registers

AX is 0, CX is 1, DX is 2, BX is 3, SP is 4, BP is 5, SI is 6, and DI is 7.

32-bit general registers

EAX is 0, ECX is 1, EDX is 2, EBX is 3, ESP is 4, EBP is 5, ESI is 6, and EDI is
7.

Segment registers

ES is 0, CS is 1, SS is 2, DS is 3, FS is 4, and GS is 5.

Floating-point registers

ST0 is 0, ST1 is 1, ST2 is 2, ST3 is 3, ST4 is 4, ST5 is 5, ST6 is 6, and ST7 is
7.

64-bit MMX registers

MM0 is 0, MM1 is 1, MM2 is 2, MM3 is 3, MM4 is 4, MM5 is 5, MM6 is 6, and MM7 is
7.

Control registers

CR0 is 0, CR2 is 2, CR3 is 3, and CR4 is 4.

Debug registers

Page 2 of 5Key to Opcode Descriptions

2005-12-08http://courses.ece.uiuc.edu/ece390/archive/spr2002/books/labmanual/inst-ref-opcode-...

http://courses.ece.uiuc.edu/ece390/archive/spr2002/books/labmanual/inst-ref-opcode

DR0 is 0, DR1 is 1, DR2 is 2, DR3 is 3, DR6 is 6, and DR7 is 7.

Test registers

TR3 is 3, TR4 is 4, TR5 is 5, TR6 is 6, and TR7 is 7.

(Note that wherever a register name contains a number, that number is also the
register value for that register.)

B.2.2 Condition Codes
The available condition codes are given here, along with their numeric
representations as part of opcodes. Many of these condition codes have synonyms,
so several will be listed at a time.

In the following descriptions, the word "either," when applied to two possible
trigger conditions, is used to mean "either or both". If "either but not both" is
meant, the phrase "exactly one of" is used.

l O is 0 (trigger if the overflow flag is set); NO is 1.

l B, C and NAE are 2 (trigger if the carry flag is set); AE, NB and NC are 3.

l E and Z are 4 (trigger if the zero flag is set); NE and NZ are 5.

l BE and NA are 6 (trigger if either of the carry or zero flags is set); A and NBE are
7.

l S is 8 (trigger if the sign flag is set); NS is 9.

l P and PE are 10 (trigger if the parity flag is set); NP and PO are 11.

l L and NGE are 12 (trigger if exactly one of the sign and overflow flags is set);
GE and NL are 13.

l LE and NG are 14 (trigger if either the zero flag is set, or exactly one of the sign
and overflow flags is set); G and NLE are 15.

Note that in all cases, the sense of a condition code may be reversed by changing
the low bit of the numeric representation.

B.2.3 Effective Address Encoding: ModR/M and
SIB
An effective address is encoded in up to three parts: a ModR/M byte, an optional
SIB byte, and an optional byte, word or doubleword displacement field.

The ModR/M byte consists of three fields: the mod field, ranging from 0 to 3, in
the upper two bits of the byte, the r/m field, ranging from 0 to 7, in the lower three
bits, and the spare (register) field in the middle (bit 3 to bit 5). The spare field is
not relevant to the effective address being encoded, and either contains an
extension to the instruction opcode or the register value of another operand.

The ModR/M system can be used to encode a direct register reference rather than
a memory access. This is always done by setting the mod field to 3 and the r/m

Page 3 of 5Key to Opcode Descriptions

2005-12-08http://courses.ece.uiuc.edu/ece390/archive/spr2002/books/labmanual/inst-ref-opcode-...

http://courses.ece.uiuc.edu/ece390/archive/spr2002/books/labmanual/inst-ref-opcode

field to the register value of the register in question (it must be a general-purpose
register, and the size of the register must already be implicit in the encoding of the
rest of the instruction). In this case, the SIB byte and displacement field are both
absent.

In 16-bit addressing mode (either BITS 16 with no 67 prefix, or BITS 32 with a
67 prefix), the SIB byte is never used. The general rules for mod and r/m (there is
an exception, given below) are:

l The mod field gives the length of the displacement field: 0 means no
displacement, 1 means one byte, and 2 means two bytes.

l The r/m field encodes the combination of registers to be added to the
displacement to give the accessed address: 0 means BX+SI, 1 means BX+DI, 2
means BP+SI, 3 means BP+DI, 4 means SI only, 5 means DI only, 6 means BP
only, and 7 means BX only.

However, there is a special case:

l If mod is 0 and r/m is 6, the effective address encoded is not [BP] as the above
rules would suggest, but instead [disp16]: the displacement field is present
and is two bytes long, and no registers are added to the displacement.

Therefore the effective address [BP] cannot be encoded as efficiently as [BX]; so
if you code [BP] in a program, NASM adds a notional 8-bit zero displacement,
and sets mod to 1, r/m to 6, and the one-byte displacement field to 0.

In 32-bit addressing mode (either BITS 16 with a 67 prefix, or BITS 32 with no
67 prefix) the general rules (again, there are exceptions) for mod and r/m are:

l The mod field gives the length of the displacement field: 0 means no
displacement, 1 means one byte, and 2 means four bytes.

l If only one register is to be added to the displacement, and it is not ESP, the
r/m field gives its register value, and the SIB byte is absent. If the r/m field is
4 (which would encode ESP), the SIB byte is present and gives the
combination and scaling of registers to be added to the displacement.

If the SIB byte is present, it describes the combination of registers (an optional
base register, and an optional index register scaled by multiplication by 1, 2, 4 or
8) to be added to the displacement. The SIB byte is divided into the scale field, in
the top two bits, the index field in the next three, and the base field in the bottom
three. The general rules are:

l The base field encodes the register value of the base register.

l The index field encodes the register value of the index register, unless it is 4,
in which case no index register is used (so ESP cannot be used as an index
register).

l The scale field encodes the multiplier by which the index register is scaled
before adding it to the base and displacement: 0 encodes a multiplier of 1, 1
encodes 2, 2 encodes 4 and 3 encodes 8.

The exceptions to the 32-bit encoding rules are:

Page 4 of 5Key to Opcode Descriptions

2005-12-08http://courses.ece.uiuc.edu/ece390/archive/spr2002/books/labmanual/inst-ref-opcode-...

http://courses.ece.uiuc.edu/ece390/archive/spr2002/books/labmanual/inst-ref-opcode

l If mod is 0 and r/m is 5, the effective address encoded is not [EBP] as the
above rules would suggest, but instead [disp32]: the displacement field is
present and is four bytes long, and no registers are added to the displacement.

l If mod is 0, r/m is 4 (meaning the SIB byte is present) and base is 4, the
effective address encoded is not [EBP+index] as the above rules would
suggest, but instead [disp32+index]: the displacement field is present and is
four bytes long, and there is no base register (but the index register is still
processed in the normal way).

Prev Home Next
Intel x86 Instruction
Reference

Up Key to Instruction Flags

Page 5 of 5Key to Opcode Descriptions

2005-12-08http://courses.ece.uiuc.edu/ece390/archive/spr2002/books/labmanual/inst-ref-opcode-...

http://courses.ece.uiuc.edu/ece390/archive/spr2002/books/labmanual/inst-ref-opcode

