

XPL (TM)

1.3

 USER'S GUIDE

 Copyright 1996-97 by Serge Sibony

ALL RIGHTS RESERVED

sibony@usa.net

sibony@club-internet.fr

WEB PAGES :

http://www.pik.com/pikprogs.html

http://sibony.home.ml.org

http://www.geocities.com/eureka/3286

DISCLAIMER OF WARRANTY

 THIS SOFTWARE AND MANUAL ARE SOLD "AS IS" AND WITHOUT WARRANTIES AS TO PERFORMANCE OF MERCHANTABILITY OR ANY OTHER WARRANTIES WHETHER EXPRESSED OR IMPLIED. BECAUSE OF THE VARIOUS HARDWARE AND SOFTWARE ENVIRONMENTS INTO WHICH THIS PROGRAM MAY BE PUT, NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE IS OFFERED. GOOD DATA PROCESSING PROCEDURE DICTATES THAT ANY PROGRAM BE THOROUGHLY TESTED WITH NON-CRITICAL DATA BEFORE RELYING ON IT. THE USER MUST ASSUME THE ENTIRE RISK OF USING THE PROGRAM. ANY LIABILITY OF THE SELLER WILL BE LIMITED EXCLUSIVELY TO PRODUCT REPLACEMENT OR REFUND OF PURCHASE PRICE.

 Release nb Date Descript

 1.3 01/10/97 New Functions

 1.2 20/07/96 Some Bugs removed

 1.1	 14/07/96	Optim. Compilation

 1.0	 10/06/96	First Release

 2

Description

This document presents the eXtended midi Programming Language (XPL) used by MidiLang.

This language is a extention of the MPL, therefore you should read and learn how to use the MPL instructions to fully anderstand the XPL. Have a look at the MPL chapter in the document : midilang.wri.

XPL has been created to ease the writing of complex effects and to add features missing in the MPL. Most of the features found in the C language (named variables, loop, calculation..) have been ported into the XPL. A knowledge of C will help you a lot.

Because, my aim is not to teach C language, this document is based on examples only. Each features of the XPL will be demonstrated with examples ready to be used and compiled.

3

How to Compile

Because MPL can be sometime a real headhack, XPL has been created. But Midilang read only MPL file. You must then translate your XPL files into MPL files. A sort of compilation from XPL to MPL.

To do so, use the "Compile XPL" item of the FILE menu of MidiLang.

The name of the input XPL file (filename.xpl) and the name of the output MPL file will be asked. A DOS window will appear, any error will be displayed in this window. At the end of the compilation, if no error occur, the MPL file has been created and is ready to be used as a normal effect file.

Note that the compiler is actually an external dos program : "sml.exe". My Windows C compiler didn't like my way to deal with the malloc function.. I was obliged to switch to my old Dos C compiler for SML... You can run the XPL compiler directly from Dos : sml file.XPL file.mpl . But you still need to run windows to use the MPL file with MidiLang !

4

XPL : a small C

You can think of XPL as a specialized C with some limitations :

-free format

	the two instructions are similar :

	1)	chan +=

			12 -

		(6*time)

			;

	2)	chan+=12-(6*time);

-case insensitive

	chan is equivalent to Chan , to CHAN, to cHan ...

-named variables

	you can define as much variable you need, and with whatever name you want :

	var i,j,memo;

	var list_notes;

-array

	arrays can be used (but only one dim is allowed)

	var data[100];

- ; at the end of all instructions

as C, all instruction must be ended with a ;

- any level of {} inside an function

- any level of () inside an instruction

- /* */ commentary

5

Functions :

All XPL files must have the main function :

main ()

{

}

This is the minimal xpl program. It does nothing.

the main function is equivalent to the LABEL MAIN in MPL

With this version of sml, you can define only 4 functions :

main () 	<-> LABEL MAIN

beats () 	<-> LABEL BEATS

init ()		<-> LABEL INIT

mapper ()	<-> LABEL MAPPER

		(read the chapter MPL in midilang.wri to know about LABEL)

but you can use: exp, log, sin, cos, rand, sqrt as in C

Some variations of the main function :

main ()	the standard one

	NOTE,VEL,CHAN,TIME are the name of the variable of the MidiIn Events

main (notename)

the variable with the note number of the incoming Midi Event is defined as "notename"

	ex : main (key)

main (notename, velname)

the variable with the note number of the incoming Midi Event is defined as "notename"

the variable with the velocity value of the incoming Midi Event is defined as "velname"

	ex : main (key, speed)

6

main (notename, velname, channame)

the variable with the note number of the incoming Midi Event is defined as "notename"

the variable with the velocity value of the incoming Midi Event is defined as "velname"

the variable with the channel number of the incoming Midi Event is defined as "channame"

	ex : main (key, speed, path)

main (notename, velname, channame , timename)

the variable with the note number of the incoming Midi Event is defined as "notename"

the variable with the velocity value of the incoming Midi Event is defined as "velname"

the variable with the channel number of the incoming Midi Event is defined as "channame"

the variable with the time count of the incoming Midi Event is defined as "timename"

	ex : main (key, speed, path, timing)

7

Variables

Only one type of variable is used : var (equivalent to float)

ex :

main ()

{

var i,j,k;

i=1;

j=1.23;

}

But this type of variable accepts arrays :

ex:

main ()

{

var memo[10],i,j;

memo[1]=12.2;

i=2;

j = memo[1] / i ;

memo[I]=j;

}

All variables in XPL are global: a variable defined in the function main can be used in any other function.

8

Set

The most common instruction is : setting a value to a variable :

variable set_cmd value

ex: chan = 12;

the list of set_commands is :

=	var1 = var2 	copy the value of var2 into var1

		ex: i = 1;

+=	var1 += var2	 add the value of var2 to var1

		ex: i += 2;

-=	var1 -= var2	substract the value of var2 to var1

		ex: note -= 12;

*=	var1 *= var2 	multiply var1 by var2 and copy the result into var1

		ex: note *= 2;

/=	var1 /= var2	divide var1 by var2 and copy the result into var1

		ex: note /= 2;

==	test if var1 is equal to var2

		ex: if (chan == 12)

			{ i+=1; note =12; }

>=	test if var1 is upper or equal than var2

		ex: while (note >= 24) note -=12;

<=	test if var2 is lower or equal than var2

>	test if var2 is upper than var2

<	test if var2 is lower than var2

!=	test if var2 is different than var2

&&	test if two tests are true

		ex: if ((i==2) && (j==3)) k=5;

||

	test if at least one of two tests is true

		ex: if ((i==2) || (j==3)) k=5;

!	test if a test is false

		ex: if (! (chan==12)) chan=12;

9

*	multiply

		ex: i = 12*k;

/	divide

		ex: i = 12/k;

+	add

		ex : i = k + (j/12);

-	substract

		ex: i = 12-j:

++	add 1

		ex: i++;

--	subtract 1

		ex: i--;

ex:

main ()

{

var i,k;

i = note /12;

j = note - (i*12);

if (j<0) j+=12;

chan++;

outmidi ();

}

ex:

main ()

{

var value;

value = 5- (12/(7-8.12)*(5-(7+(12/46))));

}

10

CONST

A sort of define.

main ()

{

const pi = 3.14159265354;

var val1,val2;

val1=3*pi;

}

IF	[ELSE]

main ()

{

if (chan>12)

	chan -= 12;

if ((vel>0) && (chan < 12))

	{

	vel /=2;

	time+=120;

	outmidi();

	}

if (i>12) i--;

	else i++;

}

WHILE

main ()

{

while (chan > 12) chan -=12;

while (vel > 1)

	{

vel /= 2;

time+=120;

outmidi ();

	}

}

11

DO WHILE

main ()

{

do

	{

time+=120;

chan--;

outmidi();

	}

while (chan >0);

}

FOR

main ()

{

var i;

for (i=0;i<4;i++)

	{

time+=120;

vel/=2;

outmidi();

	}

}

OUTMIDI

same as the OUTMIDI command in MPL

DESCRIPT

main ()

{

descript (" Echo in xpl");

descript (" 4 echos, 1/8 sec delay");

const sec 960

var i;

for (i=0;i<4;i++)

{

vel /= 1.5;

time += sec / 8;

outmidi();

}

}

12

SAVEIN

savein (0) is equivalent to UNSAVEIN in MPL

savein (1) is equivalent to SAVEIN in MPL

SPEEDUP (value)

To speed up or slow down a .mid file, use this command

speedup(2) will speedup 2 times a .mid file (in post-processing)

speedup (0.5) will slow down 2 times a .mid file (in live or in post-processing)

To speed up 2 time a .mid file use the xpl file :

init ()

{

speedup (2.0);

}

main ()

{

}

CLEAR ()

Clear will clear all notes still in memory (and supposed to be sent later to the keyboard).

Clear use the 4 values :

chan1(value)

chan2(value)

note1(value)

note2(value)

clear will remove all notes stillin memory if their channel is between chan1 and chan2 (included) and if the note number is between note1 and note2 (included).

example to remove all notes still in memory :

main ()

{

chan1(0);

chan2(16);

note1(0);

note2(9999);

clear();

}

