
PASSWORDTECH
OPEN-SOURCE PASSWORD GENERATOR & MANAGER

SCRIPTING MANUAL

Version 3.0.0

Copyright Information
Copyright © 2020 by Christian Thöing <c.thoeing@web.de>
See User Manual (manual.pdf) and License (license.txt) for more details on the Password Tech software.

Password Tech Scripting Manual 2

Contents
Introduction .. 3

Lua Notes .. 3

Data Types ... 3
Function Syntax ... 3
Bit fields ... 4

Structure of a Lua Script ... 5

Script Properties .. 5
Function init() ... 5
Function generate() ... 6

PwTech Lua API Functions .. 7

Function pwtech_random() .. 7
Function pwtech_password() ... 8
Function pwtech_phonetic() ... 8
Function pwtech_passphrase() .. 9
Function pwtech_word() ... 9
Function pwtech_numwords() .. 10
Function pwtech_format() .. 10

Example Scripts ... 11

Password Tech Scripting Manual 3

Introduction
As of version 3.0.0, Password Tech (PwTech) allows running custom Lua scripts to generate
passwords, passphrases, and generally any kind of random sequences. Lua is a high-level, dy-
namically typed programming language, providing basic mathematical functions, string opera-
tions, and list/array functionalities. For an introduction to Lua programming see, for example,
the online version of the book Programming in Lua by R. Ierusalimschy.

For creating and editing Lua scripts, you can use any text editor such as Notepad++ or a code
editor such as Lua Development Tools.

Input of user parameters (PwTech script), output of passwords (script PwTech), and gen→ → -
erating random data (including passwords, passphrases, …) within a script is accomplished
through a dedicated application programming interface (API). This API as well as the general
structure of Lua scripts for PwTech are explained in the following.

Lua Notes

Data Types
The PwTech Lua API uses the following data types for transferring input and output arguments
between the main application and the scripting level:

Integer

32-bit signed integer number, ranging from -2,147,483,648 to 2,147,483,647.

Float

64-bit floating point number (double precision, corresponding to double type in C/C++), rang-

ing from 10-308 to 10308 with a precision of 15-17 decimal digits.

String

String of 8-bit integers (each ranging from 0 to 255), also called octets, with UTF-8 encoding.
In UTF-8, a single Unicode character is encoded as up to four octets. Thus, a string of length
len (number of octets) may actually consist of less than len Unicode characters. If the pass-

word generated by the main application contains Unicode characters outside the 7-bit ASCII
character set, you have to treat the UTF-8 octet representations of these charaters as units
that must not be separated.

To determine the UTF-8 octet length of a Unicode character in a Lua string, you can use the fol-
lowing rule: If the first octet o of the UTF-8 unit is <192, 192 ≤ o < 224, 224 ≤ o < 240, or
≥240, the octet length of the Unicode character is 1, 2, 3, or 4, respectively.

Function Syntax
A Lua function may look like this:

https://www.eclipse.org/ldt/
https://notepad-plus-plus.org/
https://www.lua.org/pil/contents.html
https://www.lua.org/

Password Tech Scripting Manual 4

function fun(param1, param2, param3)

--do something...
return ret1, ret2

end

In this manual, the input arguments param1, param2, param3 are called parameters, and the

output arguments ret1, ret2 are called return values. The following syntax is used to illustrate

the usage of a function:

fun(param1 [, param2 [, param3]]) -> ret1, ret2

Input and output arguments are set in italic. Parameters without brackets are mandatory,
those enclosed with square brackets [] are optional. In the above example, only param1 is

mandatory, whereas both param2 and param3 are optional. Thus, the function can be called as

fun(1), fun(1, 2), and fun(1, 2, 3). Return values are specified after a stylized arrow “->”

for better visibility. Note that the caller is not obliged to catch all return values but may decide
to catch only the first n values or none of them, e.g., via r = fun(42).

Bit fields
PwTech uses bit fields to encode binary options, i.e., options that can be either enabled or dis-
abled, in 32-bit integer numbers. Each option or bit flag occupies one bit position in the num-
ber and sets the bit to 0 (false) or 1 (true) if the option is disabled or enabled, respectively. To
set a bit to 1 in the bit field integer and thus enable the corresponding option, the integer is
combined by bitwise “or” with the number corresponding to the bit position. The i-th bit corre-
sponds to the number 2i−1 (first bit = 1, second bit = 2, third bit = 4, etc.). For example, to set
the 2nd, 3rd, and 5th bit, the values 2, 4, and 16 are combined by bitwise “or” to yield the bit
field integer 22 (in binary notation: 10110).

Conversely, to check whether a bit flag at a specified position in the integer is set, the bit field
is combined by bitwise “and” with the number corresponding to the bit position. If the result of
this operation is nonzero or zero, the bit flag is set (enabled) or not set (disabled), respective-
ly. For example, to check whether the 3rd bit is set in the bit field 22 (10110), calculate 22 and
4 = 4 (nonzero), hence the flag at this position is set.

You can use the Lua operators | and & for the bitwise “or” and “and” operations, respectively.

For example, to set the 4th and 6th bit (values of 8 and 32) in a bit field integer, you can use the
statement:

flags = flags | 8 | 32

To check whether the 4th bit (value of 8) is set, you can use the following if statement:

if flags & 8 ~= 0 then

--do something...
end

Password Tech Scripting Manual 5

Structure of a Lua Script
When generating passwords from a script, PwTech calls two functions, init() and

generate(). init() is optional and only called once, namely when generating the first pass-

word. It can be used to transfer the user parameters related to password generation to the
scripting level. generate() is mandatory—scripts without this function will not be loaded—and

called whenever a new password is requested. It passes the password that has been generated
by PwTech before (using the other Include … options, if applicable) to the script via input argu-
ments, which may then be manipulated by the script. However, the script may also generate a
completely new password. The generated password is then returned to PwTech via output ar-
guments (return values).

The script may also expose specific properties to PwTech, which can be used to optimize the
password generation. The specification of properties is optional, but they must be defined as
global variables in the form script_property=setting (all variables have global scope unless

explicitly declared local via the local keyword) in order to be recognized by PwTech.

Script Properties
The following properties are currently supported:

script_flags Integer Bit field (bit flags combined by bitwise “or”) that encodes binary
(on/off) properties of the script. Default is 0 (if variable is not
specified).
1 – The script generates passwords completely on its own
(stand-alone) and does not use previously generated passwords
(via Include … options in PwTech). If specified, PwTech will not
generate any passwords, passphrases, or formatted passwords
before executing the script, and always pass an empty password
to the generate() function.

Function init()
The specification of this function is optional. It is used to pass user parameters related to pass-
word generation to the script. These parameters can then be evaluated in the script to further
customize the password generation.

Function definition

init(num_passw, dest, gen_flags, advanced_flags, num_chars, num_words,

format_str)

Parameters

num_passw Integer Number of passwords to be generated (≥1).

dest Integer Destination of the generated password(s):
0 – Single password in password box (main window)

Password Tech Scripting Manual 6

1 – Multiple passwords in password list window
2 – Write password(s) to file
3 – Copy password to clipboard
4 – Show password in message box
5 – Display password(s) on the console
6 – Autotype password

gen_flags Integer Bit field (bit flags combined by bitwise “or”) that encodes the
types of password to be generated:
1 – Include characters
2 – Include words
4 – Format password
Example: 5 = Include characters + Format password.

advanced_flags Integer Bit field that encodes the “Advanced password options” flags (list
of checkboxes). The options in the list correspond to the flags 1,
2, 4, …, 2N-1 (from 1st to N-th list entry) with N being the number
of options.

num_chars Integer Number of characters for option Include characters.

num_words Integer Number of words for option Include words.

format_str String Format sequence for option Format password – may be nil
(empty).

Return values

None.

Function generate()
This function must be specified in the script. PwTech calls it whenever a new password is re-
quested and passes the password that has been generated so far as an input parameter. This
password can be manipulated on the scripting level. Also, a new random password can be gen-
erated by calling dedicated API functions. The function should return the new password and the
corresponding entropy value.

Function definition

generate(passw_num, in_passw, in_entropy) -> out_passw, out_entropy

Parameters

passw_num Integer Password number: Always 1 if a single password is generated,
≥1 if multiple passwords are generated (1 for 1st, 2 for 2nd pass-
word, …).
Note that passw_num is not necessarily incremented with every

call: If the “Exclude duplicates” option is enabled and the previ-
ously generated password was a duplicate, the password num-
ber does not change.

in_passw String Password that has been generated before executing the script.

Password Tech Scripting Manual 7

This may be a password, passphrase, formatted password, or a
combination thereof. The password may be nil (empty).

in_entropy Float Entropy value associated with in_passw. 0 if password is empty

or does not contain any random characters.

Return values

out_passw String Password to be transferred to the main application. Make sure
that the password is properly UTF-8 encoded!

out_entropy Float Entropy value associated with out_passw.

PwTech Lua API Functions
The PwTech Lua API provides functions for generating random numbers, passwords, passphras-
es, formatted passwords, and more. All functions can be called from the init() and gener-

ate() function within the script.

Function pwtech_random()
Returns a random floating point number between 0 and 1, or an integer number in a specified
range. It is functionally equivalent to math.random() from the Lua standard library. There are

three versions of this function.

Function definition

(1) pwtech_random() -> rnd_f

(2) pwtech_random(n) -> rnd_n

(3) pwtech_random(n1, n2) -> rnd_n

Parameters

(1) – – Generates floating point number between 0 and 1 (0 inclusive, 1
exclusive).

(2) n Integer Generates random integer in the range 1 to n (both inclusive).

(3) n1, n2 Integer Generates random integer in the range n1 to n2 (both inclusive).

Return values

(1) rnd_f Float Floating point number between 0 and 1.

(2) rnd_n

(3) rnd_n
Integer Integer in the specified range.

Password Tech Scripting Manual 8

Function pwtech_password()
Generates a random password of a specified length, using the character set that is currently
loaded in PwTech.

Function definition

pwtech_password(len [, flags]) -> passw, entropy

Parameters

len Integer Desired password length (number of Unicode characters). Note
that the returned string may be longer than len due to the UTF-

8 encoding.

flags Integer (optional) Bit field that encodes various options to customize the
password generation:
1 – First character must not be a lower-case letter
2 – Exclude repeating consecutive characters
4 – Only include additional characters if custom character set
contains appropriate subset
8 – Include at least one upper-case letter
16 – Include at least one lower-case letter
32 – Include at least one digit
64 – Include at least one special symbol
512 – Each character must occur only once

Return values

passw String Resulting password, UTF-8 encoded.

entropy Float Entropy of the password.

Function pwtech_phonetic()
Generates a random phonetic password of a specified length, using the phonetic trigrams that
are currently loaded in PwTech. Letters are lower-case by default.

Function definition

pwtech_phonetic(len [, flags]) -> passw, entropy

Parameters

len Integer Desired password length (number of Unicode characters). Note
that the returned string may be longer than len due to the UTF-

8 encoding.

flags Integer (optional) Bit field that encodes various options to customize the
password generation:
8 – Include at least one upper-case letter

Password Tech Scripting Manual 9

16 – Include at least one lower-case letter
32 – Include at least one digit
64 – Include at least one special symbol
128 – Upper-case letters
256 – Lower-case and upper-case (mixed-case) letters, selected
randomly for each letter; increases entropy by 1 bit per letter

Return values

passw String Resulting password, UTF-8 encoded.

entropy Float Entropy of the password.

Function pwtech_passphrase()
Generates a passphrase composed of random words from the currently loaded word list.

Function definition

pwtech_passphrase(num [, chars [, flags]]) -> passphr, entropy

Parameters

num Integer Desired number of words (max. 100).

chars String (optional) Characters to be combined with the words (equivalent
to the option “Combine words with characters” in PwTech’s main
window) if corresponding flag is set (see next parameter). May
be nil if the combination with characters is not desired.

flags Integer (optional) Bit field that encodes various options to customize the
passphrase generation:
1 – Combine words with characters (if chars is a valid string)

2 – Do not separate words by a “-” character
4 – Do not separate words and characters by a “-” character
8 – Reverse order of words and characters (i.e., characters first)

Return values

passphr String Resulting passphrase, UTF-8 encoded.

entropy Float Entropy of the passphrase (without considering characters given
in chars parameter).

Function pwtech_word()
Returns a word from the currently loaded word list.

Function definition

(1) pwtech_word() -> word

Password Tech Scripting Manual 10

(2) pwtech_word(idx) -> word

Parameters

(1) – – Returns a random word from the word list.

(2) idx Integer Returns the word at position idx in the word list. Consistent with

Lua conventions, the first word has index 1 and the last word
has index N. To get the number of words N in the list, call
pwtech_numwords().

Return values

word String Word from the word list, UTF-8 encoded.

Function pwtech_numwords()
Returns the size (number of words) of the currently loaded word list.

Function definition

pwtech_numwords() -> num

Parameters

None.

Return values

num Integer Size of the word list.

Function pwtech_format()
Generates a formatted password using the specified format string.

Function definition

pwtech_format(format [, flags]) -> passw

Parameters

(1) format String Format sequence for generating the password. Refer to the
PwTech User Manual for more details on the syntax of format se-
quences.

(2) flags Integer (optional) Bit field that encodes various options to customize the
password generation:
1 – Exclude repeating consecutive characters

Password Tech Scripting Manual 11

Return values

passw String Resulting password, UTF-8 encoded.

Example Scripts
Example Lua scripts are contained in the folder script_examples within the folder where Pass-
word Tech resides.

Happy scripting!

	Introduction
	Lua Notes
	Data Types
	Integer
	Float
	String

	Function Syntax
	Bit fields

	Structure of a Lua Script
	Script Properties
	Function init()
	Function definition
	Parameters
	Return values

	Function generate()
	Function definition
	Parameters
	Return values

	PwTech Lua API Functions
	Function pwtech_random()
	Function definition
	Parameters
	Return values

	Function pwtech_password()
	Function definition
	Parameters
	Return values

	Function pwtech_phonetic()
	Function definition
	Parameters
	Return values

	Function pwtech_passphrase()
	Function definition
	Parameters
	Return values

	Function pwtech_word()
	Function definition
	Parameters
	Return values

	Function pwtech_numwords()
	Function definition
	Parameters
	Return values

	Function pwtech_format()
	Function definition
	Parameters
	Return values

	Example Scripts

