



Password Finder

for Blowfish Advanced 97 



Version 1.0b



Copyright © 1998 Markus Hahn <hahn@flix.de>









What's Password Finder?



When you are reading these lines you might be a user (registered or not) of the file encryption software Blowfish Advanced 97 (BFA97).



I'm sure you already know how to encypt and decrypt files with BFA97 and trust the security of the used algorithms Blowfish, triple-DES, PC1 and so on.



You may ask now:



What is this program good for?

Oh no, an anti BFA97 program for attackers who want to spy out my data?

Are there any trapdoors built in BFA97?



Don't worry.



BFA97 does not have any trapdoors to find user passwords by a faster way than just brute force (which means trying out all possible passwords). And Password Finder (for Blowfish Advanced 97) was not designed for the bad guys, but for giving users (registered or not) a chance to find out lost passwords more quickly and last but not least to show what will happen if a password too short or too cheap was choosen for protecting files.



Password Finder is a password search program, simply said you can try out different passwords automatically (and very fast) and get a feedback if a password seems to be the right one. Of course you can do the same thing with BFA97, too. But this will take much more time, I guess.



�


Simple example



As already mentioned in the help file of BFA97 a safe password must fullfill some criteria like



it should be long enough

it should contain different characters, not only "a..z"

it should not be predictable, e.g. using your girlfriend's name for a password



If the password was choosen wisely (or a key disk was used with a key file large and random enough) then Password Finder will have no chance to find it. Yes, it will find it some day, that is for sure. But before this will happen mankind has vanished (or the universe collapsed, depending on the length of the password).

Ok, but you want to see what this program can do.



First you have to encrypt a file with a simple password, e.g. a small text file (let's say "test.txt") with "12345" as the password. You may choose every encryption algorithm available in your configuration.

After the encryption process you must have the cryptfile "test.txt.bfa" ready.



Exit BFA97 now and start Password Finder. First you must enter the key spectrum, which means all characters you guess to be in the password.. We assume that only the keys "0..9" have been used. So please enter "0123456789". Then enter the assumed password length, for our case just enter "5". That's all. Now click on the "Start..." button and select the cryptfile "test.txt.bfa". After the selection the program starts trying out all possible passwords. Depending on the performance on your system it takes some seconds until the test is finished (on a Cyrix P200+ around 2 seconds) or all the 100,000 passwordcombinations are tested respectively. After the test you see the password "12345" found by Password Finder in the "Matching Passwords" list.





Key spectrum and password length



The example above was very simple. And I hope no user will choose such a password so easy to crack. If one does it anyway you have seen what the such an encryption is worth like - just nothing. Password Finder is "only" a demo program but also very well speed-optimized, so you can be sure to have a fine tool for a brute force attack already.

For an efficient search you can enter not only the length of the password, but also the key spectrum.

E.g. if you set the password length to 3 and the provide the spectrum "abc" then the program will try out the following passwords:



	aaa aab aac aba abb abc aca acb acc

	baa bab bac bba bbb bbc bca bcb bcc

	caa cab cac cba cbb cbc cca ccb ccc



As you see the spectrum is used to tell the key generator which ASCII values to "count up". You may also activate the "Binary" switch. By this the program will search for all possible passwords, including any binary character (remember that you can enter such chars in BFA97 using the "\" prefix and a hexadecimal representation afterwards, e.g. "\08"). This is much more time consuming than using a defined spectrum, just compare it : 3 characters and "abcdefghijklmnopqrstuvwxyz" as the spectrum will cause 17,576 possibilites, in comparison to a binary spectrum with around 16 million combinations. I'm sure you recognized how fast Password Finder does its job when searching for a key - so think over it when using a new password the next time.



�


How does the program work?



Password Finder doesn't try to find the password by a known plaintext attack (means you must offer some encrypted data and its unencrypted counterpart) but by a MD5 hash comparison. 

A part of the header of every file encrypted with BFA97 contains a 32bit checksum of the original password plus 11 bytes of salt (which is also stored in the header). This checksum isn't reversible, so an attacker can't get any information about the original password from it. If you try to decrypt a cryptfile the given password is transformed with salt to a new ckecksum and then compared with the one which was stored in the header. If both are equal then there's the chance of 1 : 2^32 (around 4 billion) that the password was the right one.

So far, so good. Sounds easy to crack a password, but there's only one problem left: the 32bit checksum is only a fingerprint of the password (plus salt, but this part is always static). If you have to test more than 4 billion passwords there will be the possibility that a wrong password creates a correct checksum. So you cannot say for 100% that the detected password is the right one. For that Password Finder doesn't stop if a password was found, it only shows you the matching password in the list and goes on. You have to decide whether the password might be the right one or not.

If you have to break a binary password of the length of 6 bytes the program will report success every 4 billionth password in average. In the worst case you have to check out around 65,536 matching passwords. For finding out the right one automatically the whole thing gets really worse if you don't have any cipher-/plaintext pairs (not to talk about the computer power needed to test all 2^48 passwords).

You see that the program is not the ultimate brute force attacking tool, but a nice utility to find lost passwords, assuming you remember the key length and most of the characters you might have used for it.



It might to seem a little bit strange to you that a program like this was developed by the same author of the counterpart, the file encryption program. But it's much better to convience the users to choose safe passwords by programming such a brute force program instead of hoping that there is nobody out there doing the same job (in much more extensive way).





Future versions



will not follow. I wrote this program only for demonstration purposes. Version 1.0a just excluded some unnecessary debug code (this can happen if you to play with Visual C++ and the weird MFC) and had a new icon. Version 1.0b uses the final release of CryptPak.dll now.

I hope this example is a lession for all those folks who use weak passwords in the hope that it won't be guessed too fast. It will. Since today.



Markus Hahn, March 1998





Visit http://www-hze.rz.fht-esslingen.de/~tis5maha/software.html for the latest versions of my software.

Or drop me an e-mail at the address <hahn@flix.de>
