RHBVS

ROSE SWE’s Heuristic Based Virus Scanner

ROSE SWE, Ralph Roth

Table of Contents

1. Introducing RHBVS
2. Why?
3. Requirements
3.1. SmallMem and BigMem Versions of RHBVS
4. Terms
4.1. Heuristic (computer science)
4.2. Computer Virus
5. Options and Switches
5.1. Command Line Options
5.2. The Option /virsort
6. User documentation
7. Virus classification
7.1. Some terms
8. False Positives
8.1. Known False Positives
8.2. False positives causes by third party software
9. Error Codes
10. Technology
11. Bugs & Limits, Future
12. License
13. History
13.1. Version 8
13.2. Version 7
13.3. Version 6
13.4. Version 5
13.5. Version 4
13.6. Version 3
13.7. Version 2
13.8. Version 1
13.9. Beta Versions
14. Credits
15. Files
16. Miscellaneous
Computer Viruses and Malware - A Short Overview
17. Malware
18. (Computer) Virus
18.1. Direct Action Viruses
18.2. (Computer) Boot Virus

© 00 I 3 O O O = ok w N

B R R R R R W W W WNN DN DN DN DNDDNN R R R R
BB R WD R, OO NN WO W R, R R R, OO N RN O

18.3. Multipartite Virus
19. Trojan horses
20. Ramsomware
20.1. Introduction to Ransomware
20.2. Origins of Ransomware
20.3. Evolution of Ransomware
20.4. Modern Ransomware Characteristics
20.5. Steps in a Ransomware Attack
20.6. Mitigation and Defense
20.7. Ramsonware: Conclusion & Best Practices
21. Malicious Mining Software (Crypto-Miner)
22. Greyware
22.1. Scam
22.2. Adware
22.3. Spyware
22.4. Malvertising
23. Backdoors
24. Botnets
25. Macro viruses
26. Worms
27. Protestware
28. Stealth viruses
28.1. File stealth viruses
28.2. Full stealth viruses
28.3. Countermeasures against Stealth Viruses?
29. Encryption
29.1. What is a polymorphic virus?
30. What is an armored virus?
31. What is Phishing/Vishing?
32. Secure Boot/UEFI/Firmware Malware
32.1. UEFI BootKkits in General
32.2. Rootkits and Bootkits
33. Links / Pointers

34. Some very old (DOS) viruses that were very widespread in the past

34.1. CIH (Chernobyl)

34.2. Sasser

34.3. Melissa

34.4. Lehigh

34.5. Form

34.6. EIk Cloner

34.7. Ping Pong (Bouncing Ball)

45
46
47
47
47
47
48
48
48
48
50
51
51
51
52
52
53
54
35
56
57
58
58
58
58
39
39
60
61
62
63
63
64
65
65
65
65
65
65
66
66

34.8. The Brain Virus: The Birth of the Computer Virus Era
34.9. Cascade
34.10. Jerusalem
34.11. The Tequila Virus
34.12. Stoned
34.13. Michelangelo
35. Copyright
36. End

66
67
68
69
70
71
73
74

$Id: rhbvs.txt,v 1.155 2025/07/06 13:24:50 ralph Exp $
Format: UTF8/1S0-8859-15, Windows CR/LF, English (UK), Written in ASCII-DOC

A N N \ \N/ [/ _____ /
| _/ ~ \ | /AN Y /A_____ \
| |\ Y / | \\ /7 \
|l AN___|_ /______ /o N___//_______ /
\/ \/ \/ \/ (c) by ROSE SWE
@ Behavior-based detection (also called "dynamic detection")

RHBVS, short for "ROSE SWE Heuristic-based Virus Scanner," is an anti-virus software that employs
heuristics to detect malware. Heuristics are problem-solving strategies that rely on practical
experience and general rules to find solutions. In the context of antivirus software, heuristics are
utilized to identify malware by analyzing its behavior or characteristics, rather than relying solely
on a database of known malware signatures.

The ROSE SWE heuristic-based virus scanner functions by scrutinizing the behavior of a program
or file and comparing it against a collection of heuristics specifically designed to identify common
patterns of malicious behavior. If the program or file exhibits behavior that aligns with one or
more of these heuristics, it is flagged as potentially malicious.

Heuristic-based anti-virus software proves effective in detecting new or unidentified threats that
have yet to be included in the database of known malware signatures. However, since heuristics
are based on general rules, they can occasionally produce false positives, erroneously flagging
benign programs or files as malicious.

To ensure robust protection against malware, it is crucial to utilize a comprehensive antivirus
solution that incorporates multiple layers of defense, including signature-based detection,
heuristics-based detection, and behavior-based detection. This multifaceted approach enhances the
overall security posture and minimizes the risk of both known and emerging threats.

Chapter 1. Introducing RHBVS

RHBVS is a DOS virus scanner for DOS file and hybrid viruses using heuristic scanning technologies
and also signature-based detection! This means that RHBVS does not need to be regularly updated
like a normal virus scanner. RHBVS also uses an intelligent code analyser. Detection modules for
batch viruses, trojans, malware, scripting viruses such as Coral Draw, VBS, HTML, Windows Batch
(WBT), JavaScript, SHS (Windows Shell Scrap), Powershell, Bash and IRC (Mirc) script worms are
also included!

This is currently/was a unique feature - no other scanner can scan e.g. IRC, HTML or VBS worms
with heuristics! RHBVS gives you a detailed virus analysis based on the built-in scan engine.

Chapter 2. Why?

RHBVS was mainly written to be a test platform for the product VirScan Plus by ROSE SWE. All
improvements done in VirScan Plus improves RHBVS, RMS (replaces the older FindMirc) and vice
versa. For this reason RHBVS is limited in flexibility (e.g. checking boot sectors, Windows system

memory or the MBR).

Chapter 3. Requirements

* IBM compatible PC with a 80386 CPU and co-processor!
* 620 KB of free memory (BigMem version) or 500 KB of free memory (Overlay version)

* DOS version 5.0 or higher or Windows 32 bit (RHBVS will not run under Windows 64 bit)

If you are interested in sponsoring the porting of RHBVS to Windows 64-bit or Linux, please reach
out to us. While there are currently no plans for such a port due to perceived lack of demand and
sponsors, we are open to considering it with sufficient support. In the meantime, we recommend
utilizing MPScan (available for DOS32, Win32+64, Linux32+64), a multi-platform malware scanner
that incorporates both heuristics and signature-based detection, and has comparable or even
superior detection rates.

3.1. SmallMem and BigMem Versions of RHBVS

With the release of RHBVS version 7.18, the size of the executable has reached 500 KB. This has led
to reports that the program fails to run on systems with insufficient available DOS memory. As
RHBVS continues to be actively maintained and enhanced, the executable is expected to grow even
larger in future versions, potentially causing further compatibility issues for systems with limited
resources.

To address this challenge, we now offer two versions of RHBVS to accommodate different system
configurations:

3.1.1. SmallMem Version (Default)

This version is specifically designed for systems with restricted DOS memory. It employs overlay
technology, a method that dynamically swaps portions of code in and out of memory as needed,
thereby reducing the memory footprint. However, this approach comes with a trade-off:

* Performance Impact: The use of overlays makes the scanning process slower compared to the
original version.

* Performance Optimization: To mitigate this and improve scanning speed, we recommend
providing approximately 512 KB of EMS (Expanded Memory) which the overlay manager can
utilize to optimize performance.

The SmallMem version is now the default option and is well-suited for systems with limited
memory resources.

3.1.2. BigMem Version

For users with sufficient free DOS memory, the original version of RHBVS, now called BigMem, is
still available in the BigMem directory. This version retains the full program in memory without the
need for overlays, offering the following benefits:

» Faster Performance: Without the overhead of swapping code, the BigMem version delivers
faster and more efficient scanning.

* Recommendation: If your system has enough free memory to support it, we strongly
recommend using this version for the best overall performance.

3.1.3. Summary

To ensure compatibility and optimal performance, users should select the version of RHBVS that
best fits their system’s memory configuration:

* Use SmallMem on systems with limited DOS memory and allocate EMS memory if possible for
better performance.
* Opt for BigMem if memory availability is not a concern, as it provides faster scanning and a

more seamless user experience.

By offering these two versions, we aim to provide flexibility for our users while ensuring that
RHBVS remains functional and effective on a wide range of systems.

Chapter 4. Terms

4.1. Heuristic (computer science)

In computer science, a heuristic is a technique designed to solve a problem that ignores whether
the solution can be proven to be correct, but which usually produces a good solution or solves a
simpler problem that contains or intersects with the solution of the more complex problem.

Heuristics are intended to gain computational performance or conceptual simplicity potentially at
the cost of accuracy or precision.

4.2. Computer Virus

In computer security technology, a virus is a self replicating program that spreads by inserting
copies of itself into other executable code or documents (for a complete definition: see below).
Thus, a computer virus behaves in a way similar to a biological virus, which spreads by inserting
itself into living cells. Extending the analogy, the insertion of the virus into a program is termed
infection, and the infected file (or executable code that is not part of a file) is called a host. Viruses
are one of the several types of malware or malicious software. In common parlance, the term virus
is often extended to refer to computer worms and other sorts of malware. This can confuse
computer users, since viruses in the narrow sense of the word are less common than they used to
be, compared to other forms of malware such as worms. This confusion can have serious
consequences, because it may lead to a focus on preventing one genre of malware over another,
potentially leaving computers vulnerable to future damage. However, a basic rule is that computer
viruses cannot directly damage hardware, only software is damaged directly. The software in the
hardware however may be damaged.

While viruses can be intentionally destructive (for example, by destroying data), many other
viruses are fairly benign or merely annoying. Some viruses have a delayed payload, which is
sometimes called a bomb. For example, a virus might display a message on a specific day or wait
until it has infected a certain number of hosts. A time bomb occurs during a particular date or time,
and a logic bomb occurs when the user of a computer takes an action that triggers the bomb.
However, the predominant negative effect of viruses is their uncontrolled self reproduction, which
wastes or overwhelms computer resources.

Today (the trend started round 2005), viruses are somewhat less common due to the popularity of
the Internet - instead malware, ransomware and Trojans meanwhile dominate.

Malware, short for malicious software, is an umbrella term used to refer to a variety of forms of
hostile or intrusive software, including computer viruses, worms, Trojan horses, ransomware,
spyware, adware, scareware, and other malicious programs. It can take the form of executable
code, scripts, active content, and other software. Malware is defined by its malicious intent, acting
against the requirements of the computer user and so does not include software that causes
unintentional harm due to some deficiency (e.g. bugs).

Chapter 5. Options and Switches

Please note that command line options in RHBVS are not case sensitive. You can use either the slash
"/" or the hyphen "-" to indicate the start of an option. Additionally, options can be configured using
the environment variable RHBVS.

set RHBVS=...

To disable an option set by setting RHBVS-=... you can use the "-" at the end of the option!

when you set
set RHBVS=/all
than you can disable /all with

rhbvs c: -all-

5.1. Command Line Options

Run RHBVS.EXE with
/? to see the current supported options.

Try also
/??7 or /UNDOC to see a list of the advance options.

You can scan as many drives and directories as you want per run.
/vb Code Analyzer (past the switches /ANALYZE or /ANALYSE)

With this switch RHBVS gives you a detailed description of all the flags the heuristic scan engines
have found.

You can use the option
/vbk then RHBVS waits for a key stroke after every analysis.

Use the additional option

/log to save the analysis into a log file.

5.2. The Option /virsort

A special note about this option.

This is one of those "undocumented" switch RHBVS supports. With this switch you

o can sort in viruses AVP/FProt/VSP/DrSolly etc. misses. With this option RHBVS
creates a log file suitable for Virsort or Zoo-Sort (utilities meanwhile deprecated).
Take a look at the batch file RZOOSORT.BAT which is included in the package!

For more "undocumented" switches try also: rhbvs -?7?

Chapter 6. User documentation

This text file is written in AsciiDoc and has been converted into nice HTML and

(r) PDF files. German-speaking users should download the virus scanner "VirScan
- Plus" (VSPxxxx.*) and read the German documentation there for further
understanding.

Chapter 7. Virus classification

RHBVS classifies the different virus types, their code size and the behavior.

The classification has the following scheme:

10

{Virkit:}[Main Class]{.Length{.Minor Class}{.Germs} (Flags)

“=[VArkit Jsmc oo

Viruses created with a virus kit just like

+ Biological Warfare (BW)
+ DReg

+ Father_Mac

+ GOTH

+ IVP

+ NRLG, Nuke

+ PS-MPC, MPC, G2

+ TPE, MtE, GCAE, RTFM etc.
+ VCC

+ VCL

+ VLAD

I

+ Backdoor- Backdoor (Trojan)

+ Bat - DOS Batch file virus or Trojan

+ Boot - Boot virus and EXE header infector

+ (CSC - Coral script virus

+ Companion - small companion viruses

+ Crypt - encrypted virus

+ Fast - fast infector, like Dark Avenger

+ File - appending file infector

+ HLLx - High level language viruses
x stands for C=companion, O=overwriting, and P=parasitic

+ IIS - MS Internet Information Server Worm

+ Joke - Joke/Fun program. This is not a virus.

+]S - Java script virus

+ Mini - larger overwriting file infector

+ MIRC - MIRC script worm

+ Multi - Hybrid (multipartite) files and boot infector

+ Poly - Polymorphic encrypted virus

+ PIRC - PIRC script worm

+ SillyR - trivial memory resident file infector

+ Stealth - virus with stealth capabilities (size or file stealth)

+ TSR - virus stays resident in memory

+ Tiny - trivial appending file infector (e.g. Danish)

+ Trivial - overwriting file infector (e.g. Trivial.45)

+ WBT - Windows Batch virus

+ VBS - Visual Basic Scripting virus

+ VBS+VBS - multiple VBS infections of one host - yes RHBVS can
detect multiple infections!

+ Win32, - Windows platform specific virus or Trojan

+ Win95,98

+ exact virus name, when using the switch /TROJ]
+ exact virus name if found by the polymorph decryption engine
(Hare, MtE, BW, Grief, TPE, Lucky.Gott etc.)

L I R

If possible the virus size. If there is a question mark (e.g.) Virusname.438? the code analyzer
assumes this as the virus size!

=5 (EFE [[Fese==sssossssscasssscacosocacasocassooasosoass

If it is a Generation-1 sample.

=5 [FllEgS [[Eesomesssosasssonassooacosonascsonascoonassoonss

11

RHBVS uses the following flags as short cuts:

A - Anti debugging or anti heuristic code is used

B - can overwrite the boot sector/MBR (used by the payload or
by a boot sector infector)

D - found a decryption routine (virus seems to be encrypted)

E - Infects EXE headers like Headerbug or Pure

F - suspicious file access

H - uses hardware related instructions - common for boot viruses

I - uses INT 21h calls in a suspicious way

M - memory resident. Code will remain resident or will control
some of the DOS functions. Typical for resident file infector

0 - opens files for writing code into it

R - suspicious relocation code, typical for file infector

T - checks the date or time (usually used for a payload etc.)

U - Virus tries to stay resident in UMB (upper memory blocks)

W - Windows malware or windows shell code

I - uses at least FCB and/or directory stealth methods
- is encrypted or uses code to confuse a code analyzer

Flags will be "compressed" if more than three flags were found.
RHBVS will show them as "flag: number of occurrence", e.g.: R:4

7.1. Some terms

In computer terminology, polymorphic code is code that mutates while keeping the original
algorithm intact.

Polymorphic code was invented in 1992 by the Bulgarian cracker Dark Avenger (a pseudonym) as a
means of avoiding pattern recognition from anti virus software. This technique is sometimes used
by computer viruses, shell code exploits and computer worms to hide their presence. Most anti
virus software and intrusion detection systems attempt to locate malicious code by searching
through computer files and data packets sent over a computer network. If the security software
finds patterns that correspond to known computer viruses or worms, it takes appropriate steps to
neutralize the threat. Polymorphic algorithms make it difficult for such software to locate the
offending code as it constantly mutates.

Encryption is the most commonly used method to achieve polymorphism in code. However, not the
entire code can be encrypted, as it would be completely unusable. A small part of it remains
unencrypted and is used for the first start and to decrypt the encrypted software. Anti-virus
software targets this small unencrypted part of the code.

Malicious programmers have tried to protect their encrypted code from this strategy by rewriting
the unencrypted decryption engine each time the virus or worm is spread. Sophisticated pattern
analysis is used by antivirus software to find the underlying patterns in the various mutations of

12

the decryption engine in the hope of reliably detecting such malware.

Stealth: Some viruses try to fool anti virus software by intercepting its requests to the operating
system. A virus can hide itself by ensuring that a request of anti virus software to read an infected
file is passed to the virus, instead of to the operating system. The virus can then return an
uninfected version of the file to the antivirus software, so that it seems that the file is "clean".
Modern anti virus software employs various techniques to counter stealth mechanisms of viruses.
The only completely reliable method to avoid stealth is to boot from a medium that is known to be
clean.

13

Chapter 8. False Positives

A false positive, also referred to as a false alarm, occurs when a test erroneously indicates the
presence of a signal when there is none. False positives can be encountered in various detection
algorithms. For instance, in optical character recognition (OCR), the algorithm may identify an 'a’
even when there are only a few dots resembling the letter.

When developing such software, there is always a trade-off between false positives and false
negatives, where a true match is not detected. This trade-off involves balancing the risk of Type I
errors (false positives that wrongly reject the null hypothesis) against Type II errors (false negatives
that fail to reject the null hypothesis when it is false) in statistical hypothesis testing.

Typically, there is a predetermined threshold that determines how closely a match should resemble
a given sample before the algorithm reports it as a match. By increasing this threshold, the
algorithm becomes more stringent in its detection, requiring a closer similarity for an object to be
flagged, thus reducing the occurrence of false positives.

As RHBVS is a rules-based heuristic virus scanner, encountering false positives is a normal part of
its operation. If you come across false positives, you can send the executable file for verification
and improvement of the scanner. It is important to note that on standard installations, RHBVS
should not trigger any false positives.

8.1. Known False Positives

Currently RHBVS detects some hacking tools like unHS etc. But no normal user has this stuff on the
disk drive - so no action is taken to fix it. Other known false positives are the memory resident DOS
anti-virus programs TBAV and FProt. Both are now obsolete and no longer available.

RHBVS flags them as:
"D:\WINDOWS\TBAV_WIN\TBSCANX.EXE Fast.TSR.File (MBIBBMFR)"

This means code to stay resident and to intercept file operation like opening or execution of
executable files. When looking at the code analyser of RHBVS we see that TBSCANX stays memory
resident (M- flags+TSR),

INT 21h sub functions 3D, 3E & 6C which is typical for a fast infector (Fast) and INT 13h sub
function 02 which is typical for boot viruses (B- flags). Due to the fact TBSCANX stays resident it
relocates (R-flags) to get its address.

o THAT’S ABSOLUTELY RIGHT - SO RHBVS ONLY REPORTS A PROGRAM LOOKING
LIKE A STANDARD FILE VIRUS.... :))

8.2. False positives causes by third party software

Ralf Borgmann reported that the DSAV.VXD intercept the "Live Bait Test" and reports an unknown

14

virus. This is a bug and false positive of the DSAV.VXD - it can be reproduced only by the first start of
RHBVS :-))

>>>>>>> Please send me also viruses RHBVS misses. <<<<<<<<<<

15

Chapter 9. Error Codes

RHBVS uses the following DOS return codes when terminating. You can use them in batch files or
tools like Skull Check etc.

Error level Meaning

|

+

| RHBVS completed without any error and without

| finding any suspicious program!

| Misc. errors, like video mode or DOS version!

| The help screen was invoked.

| A virus was found in memory (by Quick Memory Scan)
| One of the signatures files (RHBVS.SIG or

| VIRSCAN.TR]) is damaged or the access is denied!
| An error occurred creating the log file (/L0G=).
I

I

|

I

I

I

I

I

I

I

|

G UU I NG RN

Not used

Path specified to scan: Access denied
Insufficient memory/not enough memory
VirScan.IRC|VirScan.VBS is missing or corrupt
One or more suspicious files have been found!
DOS error, please report it to ROSE SWE!
Internal error, please report it to ROSE SWE!
Heap Error. Not enough memory available for
RHBVS. Please try to unload some programs
Overlay manager not installed

Overlay file read error

S O 00 N o U

11..18
XX
203

208
209

16

Chapter 10. Technology

RHBVS currently uses over 350 modules to detect the various types of computer viruses. RHBVS can
also emulate and follow a polymorphic hidden jump to the virus body, for example used in the
Nostradamus.3584 (a.k.a. Grief) viruses. All the software modules have been taken from ROSE
SWE’s VirScan Plus virus scanner.

RHBVS skips files smaller than 32 bytes. The scanner can even detect and emulate anti-heuristic
programmed code! RHBVS has a detection rate of over 98% for trivial and mini viruses and over
80% for boot (image files) and hybrid viruses.

The overall detection is (tested on my virus collection):

Version [Samples] 0.01 0.10 1.00 /TROJ
== |[[PEFEENE]|smmomassressssonasssosassonasssomassonnassoonsssonos s o0
ITW-Test set Germany 30.71 [412] 36.9 [412] 39.3 [412]
Classified viruses(1) N/A 64.1 [6037] 66.7 [6119]
Unclassified viruses 22.4 [1867] 27.5 [1867] 29.5 [2020]
Version [Samples] 1.03 (1) 1.05 (1) 1.07 (1)
==|[PEFGENE |o=mmm=ssseasssoeasocacassoasssocassooasssocasssonos0s
ITw 60.4 [379] 60.4 [379] 66.8 [373]
Classified(1) 77.7 [?7?222] 77.3 [6808] 77.9 [8122]
Unclassified(2) 44,1 [2007] 45.6 [2371] 41.0 [1289]
Version [Samples] 2.00 (1) 2.02 (1) 2.03 (1)
L LS EE
ITw 75.3 [402] 80.8 [647] 80.9 [649]
Classified(1) 82.1 [8122] 84.0 [9284] 84.4 [9215]
Unclassified(2) 45,3 [1289] 48.8 [1296] 49.6 [1203]
Version [Samples] 2.04 (1) 2.05 (1) 2.10 (1)
L e
ITW(3) 81.2 [649] 84.8 [649] 76.3 [2503]
Classified(1) 84.6 [9301] 85.9 [9408] 85.1 [9553]
Unclassified(2) 48.2 [1480] 50.1 [2532] 49.4 [1042]

17

Version [Samples] 2.11 (1) 2.20 (1) 2.22 (1)

L o
ITW(3) 84.1 [649] 76.3 [2503] 85.8 [649]
Classified(1) 84.6 [9301] 85.3 [10181] 79.2 [12409]
Unclassified(2) 42.8 [998] 42.4 [1962] 55.3 [978]
Version [Samples] 2.30 (4) 2.35
--[Percent]------------mm e
ITW(3) 86.2 [1718]
Classified(1) 76.4 [18329]
Unclassified(2) 84.5 [1438] 86.8 [795]
MIRC scripts 100.0 [1018] 100.0 [1082]
Version [Samples] 2.50 (July 1999) 3.01 (Jan 2000)
== |[PEFGENE]|o=mommsssasssosacscacassomasssocassooamssoonsssonaomos
FProt, unique(1) 75.8 [19236/25393]
Unclassified(2) 72.1 [546/757] 88.2 [1871/2122]
AVP, unique 70.2 [10392/14801] 65.1 [9789/15057]

Scripts (IRC, VBS, JS) 100.0 [1233/1233]

(1) Detectable by F-Prot (includes more than 700 HLL viruses & Trojans!) All viruses are unique
(Virsort)!

(2) These are REAL viruses in my incoming directories, which are not scannable by the newest KAV
and F-Prot versions!!!

(3) ITW test set based on Joe Wells ITW lists. Included are all ITW file and boot infector Some
viruses used by the VTC ITW test bed has been added to the RHBVS ITW test bed as well as some
RIMC viruses.

(4) With switches /TROJ and /HIGH

Main goal is to increase the overall detection rate as well as reduce the false positives.

18

Chapter 11. Bugs & Limits, Future

* RHBVS runs only on DOS environments. Please provide feedback if we should port RHBVS to
Windows and Linux. The trade-off of the port will be around 20-30% less detection (non-
portable assembler routines used). Please have a look at MPSCan that is a similar portable
heuristic scanner for multiple platforms.

* This program can only handle file names with a maximum of 67+12 chars length (including
paths) because the MS-DOS box of NT. If you have longer file names (Win95/98/NT: supports
IMHO 252 chars) then you have to map your paths. Detection has been added for LAN-Manager,
Netware based networks and Microsoft compatible networks.

* RHBVS is currently not able to scan inside archives (AR], ZIP, LHA etc.)
* RHBVS cannot run under some debuggers like Soft Ice due to the HackStop security envelope. ;-)

* RHBVS is limited in scanning MS Office documents, boot viruses as well as Win32 executable
(PE/NE).

Testing a virus scanner is not an easy task and should be only done by experts on a large virus
collection!

Suggested Options for Testing

 File viruses

rhbvs <path> /all /high /log=c:\temp\vtc.log
/trj is default

¢ Boot viruses (on disks/bootable mediums)

o RHBVS is not designed to scan for (old DOS) boot viruses. Use for that task VirScan
Plus or the heuristic boot virus checker ChkPc.

19

Chapter 12. License

Please note the following: RHBVS is distributed as AnyWare, which implies that the program and
documentation are fully copyrighted by the author (ROSE SWE). The program is freely available for
use in non-commercial environments, similar to freeware. If you find RHBVS beneficial and would
like to contribute to its improvement, please feel free to send anything, for example helpful
suggestions, such as emails, bug reports, or even monetary support to the designated contact. Your
support is greatly appreciated!

20

Chapter 13. History

13.1. Version 8

06.07.2025

04.06.2025

17.03.2025

14.02.2025

11.01.2025

13.12.2024

8.83

8.77

8.55

8.44

8.30

8.00

Better SillyComp and Trivial virus detection.

Many new viruses added. Many internal enhancements, not
end user visible.

Too many viruses for the old DOS compiler, so we had a
massive rewrite of internal code.

New AVR modules added and also hundreds of new viruses
added

Adjusted number of found viruses/malware. New viruses
added

First version to be public released with reduced memory
footprint. Added a lot of new viruses.

13.2. Version 7

10.12.2024

08.12.2024

24.09.2024

7.63

7.53

7.00

Due to memory pressure the option /LIST was removed

First version that uses Overlay to reduce the memory
footprint RHBVS meanwhile has (500 KB EXE file). Added
new viruses (AVR, Signatures...).

Rewrote this documentation.

Added a new AVR module. New viruses added.

13.3. Version 6

04.09.2024

6.93

Consolidated and updated virus signatures. More
viruses added. Improved AVR modules.

21

22

18.

03.

7.

12.

04.

27.

30.

10.

13.

25.

28.

13.

20.

07.

07.

06.

03.

02.

12.

1

11

10.

09.

08.

07.

06.

2024

2024

2024

2024

2024

2023

.2023

.2023

2023

2023

2023

2023

2023

.83

.79

.70

.58

47

.39

.32

.26

.19

.18

7

.16

15

Better IRC detection. More viruses added.

Better entrypoint handling, better handling of false
positives. New viruses added. Updated documentation.

Maintenance update. Small enhancements,
new viruses added.

Maintenance update

Improved entry point engine. Maintenance update.
Small enhancements, new viruses added.

Better detection. New viruses added.

Better VCL detection.
Small enhancements, new viruses added.

Small enhancements, new viruses added.

AVR_Mini/Trojan. Maintenance update.
Small enhancements, new viruses added.

Small enhancements, new viruses added.
Maintenance update.

Maintenance update adding new virus detection

Small enhancements around the AVR-Trivial engine.
New viruses added.

Maintenance update adding new virus detection

05.06.

06.05.

08.04.

23.02.

07.02.

31.01

13.4.

13.01

15.12.

25.11

09.11

01.10.

11.09.

2023

2023

2023

2023

2023

.2023

Version 5

.2023

2022

.2022

.2022

2022

2022

6.14

6.13

6.12

6.10

6.00

5.71

5.68

5.67

5.66

5.65

5.64

Maintenance update adding new virus detection

Maintenance update adding new virus detection

Maintenance update adding new virus detection

Maintenance update adding new virus detection

Added new *NIX script and batch detection
engine to RHBVS with more than 1000 viruses.

Rewritten IRC and Batchvirus engine. New viruses.

Improved entry point engine.

Complete rewritten command line engine.
New viruses added. Improved entry point engine.

Enhanced AVR:Mini, AVR:Trivial & AVR:Silly
engines. Enhanced VirusKit detection. New
viruses added.

Enhanced AVR modules, new viruses added.

No user visible changes. Enhanced code emulation
and entry point detection. New viruses added.

Added 4 new AVR modules. New viruses added.

Small improvements and new viruses added

23

24

02.

25.

15.

18.

10.

23.

7.

09.

24.

08.

25.

09.

05.

05.

03.

02.

01

12.

07.

06.

06.

05.

2022

2022

2022

2022

2022

.2022

2021

2021

2021

2021

2021

.63

.62

.61

.60

.54

.52

51

.50

.40

.32

.31

Version bump after adding a lot of new virus
signatures.

Fixes with UTF-8 formatting. Thus maybe 3rd
party scripts may be adjusted filtering the
output of RHBVS log file. New viruses added.

Small improvements. New viruses added.

Changes and enhancements to the internal
scan engine. Added new viruses.

Internal changes and improvements. Added new
heuristic signatures and malware detection.

Added a new AVR engine for DOS Debug script
viruses. Added new viruses.

New viruses added

Internal changes and optimization for the virus

databases. Better and faster detection.
New viruses added.

Internal enhancements. Added new viruses.

RHBVS now checks for import files using the file

rhbvs.cfg. A1l files from rhbvs.cfg must be
provided.

New viruses added. Changed internal database
format (virscan.*)

New viruses mainly from MPScan added. Small
enhancements.

06.

22.

12.

14.

29.

16.

13.

05.

19.

01

01

27.

08.

03.

02.

02.

01

10.

10.

10.

10.

09.

.09.

.07.

03.

12.

2021

2021

2021

.2021

2020

2020

2020

2020

2020

2020

2020

2020

2019

.30

.22

.21

.20

15

14

13

12

11

.10

.09

.08

.07

Added the detection engine from MPScan to RHBVS.

More viruses added.

Fixed a few false positives. Added new viruses.

Rewritten "MalwareScriptViruses" engine, therefore
all virus databases require the internal version
4.00 or higher. New viruses added.

Added more than 700 viruses. Updated the AVR
Modules again. Added more signatures for boot
and multipartite viruses.

Added around 300 viruses. Changes around the
AVR modules (Tiny, Trivial, Mini). Enhanced
documentation.

Added around 400 viruses. Changes around the
AVR modules.

Massive changes and enhancements around the AVR
modules. Added hundreds of viruses.

New viruses. Added 4 new heuristic search modules

Added new viruses.

Added new viruses.

Added new viruses.

Added new viruses. More heuristic detection.

25

13.5. Version 4

26

01.11

22.06.

29.12.

20.09.

28.03.

06.12.

29.11

27.11

09.09

15.02

22.04

20.04

10.11

30.12

.2019

2019

2018

2018

2018

2017

.2017

.2017

.2017

.2017

.2016

.2015

.2014

.2013

4.98

4.97

4.96

4.93

4.92

4.91

4.90

Some internal changes. Added new viruses.

Added new viruses. Documentation update.

Added new viruses. Documentation update.

Added 22.000 viruses.

This documentation was ported to AsciiDoc.

Small enhancements. Major reprogramming
of the signature based detection.

Trojan detection is not compatible with pre
5.00 releases. New viruses detection added.

Public release with new viruses detection.

Public release. Enhancements and new viruses.

Enhancements and new viruses.

Public release. Enhancements and new viruses.

Public release. Enhancements and new viruses.

Public release. Enhancements and new viruses.

Generic encrypted script detection added.
Enhancements and new viruses.

30.

03.

30.

16.

7.

03.

13.

18.

13.

19.

14

19.

10.

03.

09.

10.

06.

02.

08.

06.

04.

03.

.03.

02.

2013

2013

2012

2011

2011

2011

2010

2010

2010

2010

2010

2010

.84

.83

.81

.80

.79

.18

AT

.76

.75

.713/4.74

.70-4.72

Enhancements for better detecting Win32 and
Win64 viruses. Added new viruses.

5000 viruses added, changed home page URL

Small enhancements, new viruses.

New viruses added, esp. the German
"Staatstrojaner" (file+live test).

New viruses added. Enhancements for Win32,
Dos32 and Linux console output.

New virus detection added. Fixed an
run-time error bug.

Added a lot of windows malware and
windows shellcode detection stuff.
New viruses added.

Win32.Shellcode handler improved.
VBS encrypted detection improved.

New viruses added. New icon for RHBVS.
Documentation updated.

Major update/enhancements added to PeHead.

Small enhancements and new viruses added.

Small bug fixes and enhancements. New
viruses added.

27

28

30.

06.

16.

N

30.

09.

25.

10.

06.

13.

19.

17.

03.

02.

.01

09.

08.

04.

03.

01

11

08.

08.

2009

2009

.2008

.2007

2006

2006

2005

2005

.2005

.2004

2004

2004

.68/4.69

.67

.66

.65

.64

.63

.62

.60

51

.50

.50-RC2

.50-RC1

Massive enhancements around the /rename
function. Bug fixes and new viruses added.

Small enhancements for Windows Vista.
New viruses added.

Small bug fixes and enhancements. New
viruses added.

Changes on the /Rename functions.

Enhancements, new viruses. Changed
virus database.

Small enhancements (e.g. .PNG detection).

Enhanced the docs. Added new signatures
to the heuristic scan engines.

Changed and enhanced the internal database.
Added new scan engines and viruses.

Enhanced VBS engine. New viruses added.

Added new viruses.

Added ~600 new viruses. Fixed a few
false positives.

Complete redesign of the script scanning
engines (VBS, Script, IRC, Batch etc.).
A lot of new viruses added.

The signature files (virscan.*) are not
compatible with the 4.71x and below
releases!

16.06.

14.04.

21.01

09.09.

07.09.

06.09.

16.07.

13.6.

13.05.

25.03.

27.02.

07.11

05.11

2004

2004

.2004

2003

2003

2003

2003

Version 3

2003

2003

2003

.2002

.2002

4.13

4.12

4.1

4.10

4.05

4.02

4.00

3.96

3.95

3.94

3.93

3.92

Small fixes, 400 viruses added.

Added QWTC - "Quick Windows Trojan Check"

Bug fixing of the command line handling
engine. New viruses added.

Bug fixing, RHBVS now requires a
CO-processor.

Added and enhanced some scan engines
and added tons of new viruses. Bug fixes.
(EXE file is therefore 20 KB bigger!).

Ported and enhanced some of the scan
engines to Linux. New viruses added.

New viruses. Changed the internal Trojan
and malware engine to run on Linux too.

Added tons of new viruses.

New and enhanced engines for VBS viruses.

Fixes for HMA/A20 gate check. Added tons
of new viruses.

Added tons of new viruses.

Added new viruses, therefore internal hash

tables had to be adjusted.

29

30

03.
20.
18.

05.

25.
23.

19.

11

17.

22.

09.

10.

08.

15.

30.

11

05.

04.
04.

04.
.04.

03.

01

01

12.

10.

08.

07.

.2002
08.
06.

2002
2002

2002

2002
2002

2002
2002

2002

.2002

.2002

2001

2001

2001

2001

91
91
91

.90

.81
.80

.73
.72

1

.70

.64

.63

.62

.61

.60

Build 433

Build 423

Documented the switch /OnlyFull. Added
new viruses.

New viruses added. Changed the format of
Virscan.trj

Added new viruses. Fixed a false positive.
Fixed a bug with Win2000/NT. Changed the
signature files.

Added 120 viruses.
Added 300 viruses.

Changed documentation (also renamed from
*.D0C to *.TXT). Added new viruses.

New viruses. DOCS changed. Bundled with Win32
installer.

New viruses. Added .PIF file for Win9x.

New viruses added. New option -delYN added.

New viruses added.

New viruses. New generic scan engine for
I1S-Worms added. Should find every worm
that uses the IIS Backdoor. To scan for
such worms, you currently need the option -ALL

Added 300 new batch and script viruses
using the new designed scan engines from
RHBVS 3.55. Those signatures are stored
in the new file "VIRSCAN.IRC".

26.07.2001

08.06.2001

03.05.2001

16.03.2001

17.02.2001

19.01.2001

04.01.2001

3.55

3.51

3.50

3.45

3.41

3.40

3.32

27.11.2000 3.31

14.09.2000 3.30

Added tons of new viruses. Added .LNK as
default extension. Introduced a version
numbering to VIRSCAN.VBS (needed for new
generic script detection). Added generic
script detection engine. Added new engines.

New viruses added. Better detection of
anti heuristic programmed VBS viruses.

Depending on your machine (386, 486 etc.)
and operating system, RHBVS is now up to
20 percent faster. New viruses.

Added more than 100 new VBS viruses. Added
.JSE, .VBE, .WSH as a default extension.
Included on the fly decryption of MS VBS
encrypted files (.VBE). New signatures
added. VBS scan engine updated.

Update of the VBS scan engine to find
VBS.NeueTarife/AnnaKov. New viruses.

New viruses added (of course :). Option
-ShowErr added. Statistic enhanced

(+ time, + total errors). Some false
positives fixed. We have ported parts of
the scan engines to win32. As a benefit
the scanning is now much faster

due to the enhancements we had to do for
the porting.

Added four new scan engines, VBS engine
was enhanced. 70 new viruses added.

New viruses added.

Added Win32 Stealth Bait test. New
viruses added.

31

25.07.2000 3.21 Added .VBA as default extension. /RenPE
enhanced. New viruses added.

05.07.2000 3.20 Faster scanning due to rewrite of the VBS
and MIRC analyzer Add option /NoScript
(same as /NoVBS). New viruses. Added 180
Trojans. Added MS Mail scanning (MSFT).
Added generic VBS detection (construction
kits etc.). Added generic Batch file
detection.

22.06.2000 3.11 Added detection for 680 Backdoors. 20 new
VBS viruses added. Added .VXD and .SHS as
default extensions. Added 70 Trojans. SHS
will now be scanned too (VBS.Life_Stages).

26.05.2000 3.10 Added detection for 250 Win/Win32 Trojans,
Backdoor and password stealing programs.
Added detection for 20 new VBS viruses.
Added .DLL extension as default. New viruses.

07.05.2000 3.03 Due to the various VBS.Love-Letter variants
we added to the virus name additionally the
length. When you use RZOOSORT.BAT to sort
your Love-Letter variants, they go now in
separate directories.

28.04.2000 3.02 Added MIRC detection in .PIF files. Added
option /NoVBS. /NoVBS 1is also set if
VIRSCAN.VBS was not found! New viruses :)
Added options /NoTrj and /NoTroj

29.01.2000 3.01 Added HLP, AVI, CHM, FTS, CNT detection.
Added Joke class to RHBVS. New viruses :)
Changed the VBS detection engine for the
first anti RHBVS specific viruses.

03.12.1999 3.00

13.7. Version 2

01.09.99

11.08.99

24.07.99

18.07.99

10.07.99

24.05.99

17.02.99

2.56

2.54

2.52

2.51

2.50

2.35

2.34

Added ACE and (WAV) Wave detection. Added
"T" flag (time/date). Added 750 new viruses.
Added new scan engines. Added the options
/VB, /VBK (code analyzer) and /REPORT.
Better Java script detection added. Nicer
screen output. The switch /stdout is now
obsolete and not supported any longer!

Added ARJ and LZH archive detection.
Renamed /ANALYSE to /WHOLE (planed to

add switch /ANALYSE[=1anguage.dat]).

RHBVS can now handle multiple infections of
VBS viruses.

New viruses. Tested RHBVS under Win2000b3
Server and fixed all bugs.

Added new VBS, JS and MIRC viruses using a
new detection engine.

WBT (Windows Batch) virus class added.
New viruses added.

HTML, 1S, CS and VBS detection added. New
viruses and other malware added.

Approx. 500 viruses added. Basic PIRC, INF
and VBS detection added. Option /COMP
(generic companion detection) added.

Option /NOMEM added. New viruses.
Added detection of HTML, PDF (Adobe Acrobat)
and MDB (MS Access) file format.

33

15.

02.

29.

29.

20.

24.

7.

7.

34

01

01

12.

1

10.

08.

05.

04.

.99

.99

98

.98

98

98

98

98

.33

.32

.31

.30

.24/2.25

.23

.22

.21

Option /RAW added. Bug with long directories
under Win-NT fixed. Tons of new viruses and
Trojans added. Added Natas decryption engine
from VSP. Enhanced the rhbvscum.awk script.

Command line handling improved. Mirc detection
improved. Code analyser and option /Virsort
enhanced. New viruses and Trojans added.

File sharing handling for Windows enhanced.

Fixed some bugs and false positives.
Enhanced the Mirc classification. Added
the rhbvscum.awk script to the package.

Added Mirc script worm detection and
heuristics. Improved file handling.
Improved /RENAME capabilities. New viruses
and Trojans If VIRSCAN.TRJ 1is found
automatically option /TROJ is added!

Non public releases!

New viruses and Trojans Added a new
Trojan detection. Added new entry point
detection. Bug fixes. RHBVS uses now the
same "smart renaming" engine like RFW.
SYS virus detection added.

New viruses. Added new scan engines (VCL,
Mini, Trivial etc.).

Fixed a lot of minor bugs in the /Rename
section. Better Live Bait Test. RZ0OSort
changed. Added a new internal scan engine.
Tons of new viruses added :)

18.03.98 2.20 /Rename, /Renumber now support more Excel
formats (.XLA, .XLS etc.), credits: A. Marx
Added advanced check for resident stealth
viruses (Stealth Live Bait Test). Added
more than 40 boot viruses and more than
70 file infector Improved the boot
heuristics. Minor bug fixes.
Currently I am working on a neural network
for RHBVS so it many take a time for the
next release :-))

15.02.98 2.1 Added or fixed the following features:

+ Added more than 50 new viruses.

+ Fixed some false positives (R. Borgmann)

+ More compatible file access. Credits
(Christian Ghisler & Ralf Borgmann).

+ Added new search engines and flags.

+ RHBVS can now only be aborted with the
Escape key (SR by R. Borgmann).

+ Heuristic flag compression/sorting

+ /Renumber=Value switch now works
correctly (one of those undocumented
features :-))

29.01.98 2.10 Enhanced check for stealth viruses and
fast infector added. Added 350 new
viruses. Enhanced companion detection.
Enhanced boot virus detection. Added new
search engines. Improved the statistics.
Enhanced code analyser Fixed some false
positives. Added the batch file
RZOOSORT.BAT to the package. RHBVS does
now a much better classification of the
virus using his new code analyser.
Changed the heuristic to produce less
false positives than the 2.05 release.

13.8. Version 1

36

28.12.97

13.12.97

21.11.97

08.11.97

01.11.97

12.10.97

2.04

2.03

2.02

2.01

2.00

1.07

Now the /LOG switch supports file names,
e.g. /L0G=C:\TMP\RHBVS.NEW etc. Changed
the error level (DOS return codes) and
documented them in RHBVS.DOC. New viruses
added, fixed some false positives and
bugs. New flag "A" added. Added the new
virus group "Poly". Added an entry point
resolver for the _310 virus. AVR for

boot viruses enhanced and improved.
Sanity (integrity) self check added!

Fixed again some false positives received
from Ralf Borgmann. About 230 new viruses
added. Now the signatures file RHBVS.SIG
also contains flags. Added new search
engines. Modified the live bait test to
fool the DSAV.VxD.

Fixed about 10 false positives (credits

Ralf Borgmann). Added new search engines
and new viruses. Overall detection ratio
is now 84 percent!

Fixed two false positives. Added more than
20 new scan engines. Enhanced the Mini

and Trivial scan engine. Added more than
200 viruses! RHBVS now scans also files
with the extensions .IMG, .BOT and .BIN.

Added the option /L0OG to generate a
simple log file.

Added more than 80 new scan engines -
they are the compressed and optimized
search strings from VirScan Plus.

Added new viruses. Added a new entry
point detection for the _1015 virus.

20.

09.

13.

06.

28.

N

09.

7.

09.

08.

07.

07.

06.

.06.
06.

06.

97

97

97

97

97

97
97

97

.06

.05

.04

.03

.02

.01virnet
.01

.00

Windows NT compatibility enhanced. Added
new viruses.

Added some viruses and a new entry point
detection engine for the Demo Fraud virus.
Windows-NT compatibility enhanced. Added

a PIF file for Windows NT 4.0.

Added the switch /FILETYPE. Added a check
for corrupted files. Added a few new
viruses. Fixed some false positives.

Enhanced the Mini-AVR module. Added new
viruses. Fixed some minor bugs. Added
option /HEUR. Release for SAC ftp etc.

Fixed two false positives. Added a few
viruses. Changed the help screen.

Added one search engine for EXE-Header
viruses. Changed access mode for faster
accessing write protected discs. Added
the 'E'-Flag.

Changed some DOCS. Release for Virnet.
Added the Option /CONT and /HIGH.
Enhanced one search engine to find the
Make2 virus.

Added the option /TROJ.

Improved the Tiny code analyser, added the
flags 'H' and "#'.

First official release

13.9. Beta Versions

29.05.97 0.10

Improved the detection rate more than 5%!

37

38

27.05.97 0.02

22.05.97 0.01

Added the option /AUTO and /BEEP.

Added RHBVSGER.FAQ, enhanced the DOC.

Fixed a bug when redirecting the output
using the stdout option (rhbvs -stdout>file)
Detection on exe packers added.

Initial release

Chapter 14. Credits

People who helped to improve this product or have given feedback.

o In alphabetical order

Andreas Haak
Andreas Marx

Axel Pettinger
Bert De Rijck
Carsten Kruse
Christian Ghisler
Claus Vogt

Frank Ziemann
Hanno Boeck

Jerry Hodges

Joe Hartmann

Joerg Abdinghoff
Lukas-Fabian Moser
Laurent Gerard
Mano Schwarz
Mathias Brunner
Masterball/codeBreaker
Michael Hering
Nobert Kirch

Peter Kosinar

Ralf Borgmann
Robert Flogaus-Faust
Sebastian Boehm
Stonehead

Tjark Auerbach
Toralv Dirro
Valentino Tosatti
Veit Kannegieser

You? ..

code analyser & more
technical consultant :)
Mirc stuff

Fam_7777

Mr. "enhancements"
technical consultant :)

Backdoor, Trojan and Worm testing

Mr. "false positives" :)

CRC32

Mirc, false positives, RIMC project
initial idea for /ANALYZE, now /vb or /vbk

new virus

HMA/A20 testing

checksum, FP, RHBVS.DOC, easily switches
stdout bug

FP, missed viruses

Mr. RHBVS beta tester :)

Mr. "false positives" :)
DOX

RIMC project

Mr. "false positives" :)

39

Chapter 15. Files

40

CRCHECK.
ROSEBBS.

FILE_ID.
RHBVS.
RHBVS.
RHBVS.
RHBVS.
RHBVS.
RHBVS.

RHBVS.
VIRSCAN.
VIRSCAN.
VIRSCAN

VIRSCAN.

RHBVSCUM. AWK
RZOOSORT. BAT

TXT
TXT

DIZ
XXX
MSG
DoC
EXE
PIF
OVR

SIG
TRJ
IRC

JWSM

MPV

checksum file of the whole distribution
the author's address and ROSE support BBS, WWW etc.

short description of the package

checksum file for integrity check
Message/language file for switch /vb

this documentation

the main executable

Win 3.1/9x/NT/2000 program interface file :-))
Overlay file for RHBVS (SmallMem version)

some heuristic scan engines and flags

signature file for HLL viruses and Trojans

signature file for script and batch viruses (IRC, BAT...)
signature file for script viruses (IRC, VBS, 1S, CSC...)
[windows scripting malware]

signature file for multipartite DOS file viruses and
boot/MBR viruses. Contains also signatures for file viruses

AWK script to create statistics reports from RHBVS.LOG
handy batch file to sort your unknown viruses!

Chapter 16. Miscellaneous

Why is RHBVS.EXE such a small program? Well it is compressed using a so called
O online compressor. Here are the results finding the best compressor for
RHBVS.EXE

Original size (10.
(17.
(09.
(25.
(10.
(13.
(28.
(28.
(29.
(02.
(20.
(08.

06.
07.
09.
04.
02.
08.
1
03.
10.
09.
06.
12.

2000)
2003)
2003)
2005)
2007)
2010)

.2017)

2018)
2020)
2022)
2023)
2024)

342.
385.
396.
407.
410.
413.
415.
416.
432.
462.
486.
503.

560
120
928
344
944
280
664
832
640
752
032
392

bytes **

bytes

bytes

bytes

bytes

bytes

bytes (147kb compressed)
bytes (132kb compressed)
bytes (-> 136.724)
bytes (161kb)

bytes (167kb)

bytes (180kb)

When RHBVS reached 500 KB (Version 7.18) we decided to reduce the memory footprint of RHBVS
by using Overlay technology.

41

Computer Viruses and Malware - A
Short Overview

A computer virus is a piece of code (software) that is installed on a computer either by a hacker, by
another compromised computer (replication), malicious attachments/mails or a website (drive-by
infection). It performs functions that the computer owner does not authorize and does not want.

Viruses are sometimes also referred to as malware. This is usually where they have adverse effects
on the computer user, such as logging each keystroke (through a keylogger), audio recording or
snapshots of each screen.

Such infection can lead to identity theft, endangerment of bank or purchase card data or loss of
confidential data. It is more likely to occur on home computers that are normally not as security
managed as corporate computers.

42

Chapter 17. Malware

Malware, or malicious software, is a generic term for a variety of malicious or intrusive software,
including computer viruses, worms, Trojans, ransomware (ransoms), spyware, adware, scareware
and other malicious programs. It can take the form of executable code, scripts, active content and
other software. Malware is defined by its malicious intent, which violates the requirements of the
computer user - and therefore does not include software that causes unintentional damage due to a
defect.

Programs officially delivered by companies can be considered malware if they secretly violate the
interests of the computer user.

43

Chapter 18. (Computer) Virus

A computer virus is a type of malicious software program ("malware") that, when executed,
replicates itself by modifying other computer programs and appending or inserting its own code.
When this replication succeeds, the affected programs are then said to be "infected" with a
computer virus.

The term "virus" is also commonly, but erroneously, used to refer to other types of malware.
"Malware" encompasses computer viruses along with many other forms of malicious software,
such as computer "worms", ransomware, spyware, adware, Trojan horses, keyloggers, rootKits,
bootkits, malicious Browser Helper Object (BHOs) and other malicious software. The majority of
active malware threats are actually Trojan horse programs or computer worms rather than classic
computer viruses.

Roughly you can distinguished between - Memory resident (fast) infecting viruses and - Direct
action viruses

18.1. Direct Action Viruses

Direct action viruses are a type of malware that infect individual files on a computer, rather than
the boot sector or Master Boot Record (MBR). They are called "direct action" viruses because they
are executed each time a specific file is opened or executed, which allows the virus to infect other
files on the computer.

Some of the simpler computer viruses do not actively manifest themselves in computer memory.
The very first file infector viruses on the IBM PC, such as Virdem and Vienna, belong to this
category. As a rule, direct viruses do not spread quickly and are not easily spread in the wild.

Direct action viruses load themselves into computer memory with the host program. Once they
have taken control, they search for new objects to infect by searching for new files. For this very
reason, one of the most common types of computer viruses is the direct action infector. This type of
virus can be created relatively easily by the attacker in binary or scripting languages on a variety of
platforms.

Direct action viruses typically use a FindFirst, FindNext sequence to search for a number of victim
applications to attack. Typically, such viruses only infect a few files when executed, but some
viruses infect everything at once, enumerating all the directories for victims.

Direct action viruses typically spread by attaching themselves to executable files, such as .exe, .com,
or .bat files. When an infected file is executed, the virus infects other files on the computer and may
also cause other malicious activity.

18.2. (Computer) Boot Virus

Boot viruses are the oldest known computer viruses. They were the most common type of virus
until 1995, but are now extinct. Today, there are almost no boot sector viruses anymore because
BIOS and operating systems usually have well-functioning software or hardware protection.

44

A boot virus is a computer virus that becomes active when the computer starts (boots) before the
operating system (DOS, Linux or Windows) is fully loaded. Boot sector viruses take advantage of the
fact that the boot sector is always loaded first. On floppy disks, the virus is at least partially in the
boot sector, so even floppy disks with no files on them can be infected. On hard disks, the virus
infects the master boot record (MBR) or logical boot sector.

A boot sector virus infects the boot sector of floppy disks and the master boot record (MBR) of a
hard drive. The boot sector is the first physical part of a floppy disk and is a sector (512 bytes). The
boot sector is used by boot floppies to boot from the floppy. When a user tries to boot from an
infected boot floppy, or leaves an infected floppy in the floppy drive when the computer starts up,
the BIOS accesses this sector and executes it with the appropriate BIOS boot setting. The virus then
attempts to infect the hard disk’s MBR every time the computer is started. When an infected
computer is started, the MBR, which is normally responsible for recognising the different partitions
on the hard drive, is loaded. Once loaded, the virus remains in memory and monitors access to
floppy disks. When a floppy disc is inserted into a computer infected with a boot sector virus, the
virus infects the boot sector of the floppy disc.

Known boot viruses include the Form virus, Parity Boot and Boot-437.

18.3. Multipartite Virus

A multipartite virus is a computer virus that infects and spreads in multiple ways. The term was
introduced to describe the first viruses that included DOS executable files and PC BIOS boot sector
virus code, where both parts are viral themselves. Prior to the discovery of the first of these, viruses
were categorized as either file infectors or boot infectors. Because of the multiple vectors for the
spread of infection, these viruses could spread faster than a boot or file infector alone.

The first virus that infected COM files and boot sectors, Ghostball (more a dropper than a real
multipartite virus), was discovered by Fridrik Skulason in October 1989. Another early example of
a multi-part virus was Flip, Frodo, Delwin and Tequila. Tequila for example could infect both DOS
EXE files and the MBR (master boot sector) of hard disks.

45

Chapter 19. Trojan horses

A Trojan horse is a program that does something undocumented which the programmer intended,
but that users would not accept if they knew about it. By some definitions, a virus is a particular
case of a Trojan horse, namely, one which is able to spread to other programs (i.e., it turns them
into Trojans too). According to others, a virus that does not do any deliberate damage (other than
merely replicating) is not a Trojan. Finally, despite the definitions, many people use the term
"Trojan" to refer only to a non-replicating malicious program.

46

Chapter 20. Ramsomware

Ransomware is a particularly invasive form of malware that hijacks a victim’s data or device and
holds it hostage (or makes false claims of illegal activity, pornography use, or suggests a system is
already infected with viruses) until a sum of money is paid to secure its release.

20.1. Introduction to Ransomware

Ransomware is a type of malware that hijacks a victim’s data or device, demanding a
ransom—usually in cryptocurrency—for its release. Sometimes, it also makes false claims about
illegal activity or pre-existing infections to pressure victims. Paying the ransom doesn’t guarantee
recovery, as attackers may refuse to decrypt the data or demand more payments. According to
Statista, only 54 per cent of organisations regained access to their data or systems after the first
payment in 2021. Paying the ransom also encourages attackers to continue their malicious
activities. In addition, the vulnerability still exists and can be exploited by another criminal group.

Ransomware has become a global threat, with attacks growing more sophisticated. Understanding
its history, evolution, and tactics is critical to combating it.

20.2. Origins of Ransomware

Ransomware first appeared in 1989 with the DOS-AIDS Trojan (PC Cyborg), created by Joseph L.
Popp. Distributed via floppy disks labeled "AIDS Information,” it used simple encryption and
demanded $189 for unlocking files.

Popp exploited public fear of the AIDS epidemic to spread the malware. Despite its basic design,
many fell victim, incurring financial losses and data breaches. Popp’s erratic behavior led to his
arrest, but he was deemed mentally unfit to stand trial. This event set the stage for ransomware to
evolve into a significant cybercrime.

20.3. Evolution of Ransomware

Ransomware has transformed into a sophisticated, profitable industry:
» Targeted Attacks: Criminals now target high-value victims like corporations, hospitals, and
government agencies.

» Stronger Encryption: Modern ransomware uses advanced encryption, making decryption
without a key nearly impossible.

* Cryptocurrencies: Bitcoin and Monero enable anonymous payments, fueling ransomware’s
growth.

* New Tactics: Techniques like double extortion (encrypting data and threatening leaks) and
Ransomware-as-a-Service (Raa$S) allow even non-experts to launch attacks.

Notable attacks like WannaCry and NotPetya caused massive global disruptions, targeting
businesses and government agencies.

47

20.4. Modern Ransomware Characteristics

Ransomware attacks today are more targeted and damaging:

* Anonymous Payments: Cryptocurrencies make tracking transactions difficult.

* Time Pressure: Deadlines threaten data deletion or leaks, forcing quick victim responses.

Unreliable Decryption: Many victims don’t recover access, even after paying. In 2021, only
54% regained access after the first payment.

* Encouraging Crime: Paying ransoms perpetuates these attacks and leaves vulnerabilities open
for future exploitation.

20.5. Steps in a Ransomware Attack

Ransomware attacks follow a common progression:
1. Gaining Access: Attackers infiltrate systems using phishing emails, malware downloads, or
exploiting vulnerabilities.

2. Spread: Malware spreads within the network, either automatically or manually in targeted
attacks.

3. Hostage Taking: Data is encrypted, and a ransom note demands payment for decryption or
preventing data leaks.

20.6. Mitigation and Defense

Defending against ransomware requires proactive measures:

« Stay vigilant against phishing attempts and suspicious files.

* Regularly update systems and software to patch vulnerabilities.
* Use multi-factor authentication to secure accounts.

* Maintain offline backups of critical data.

 Invest in robust cybersecurity tools and training.

20.7. Ramsonware: Conclusion & Best Practices

Ransomware is an ever-evolving threat. Staying informed and implementing strong defenses can
help mitigate the risk and minimize impact.

Ransomware attacks can be extremely damaging and complex, and the timeframe for action is very
limited. The best way to deal with them is to avoid them in the first place, and use mechanisms to
prevent and mitigate their impact. The best way to prevent a malware attack is to follow good
operational and security practices, such as

* Keep all software and operating systems up to date.

+ Use anti-virus and anti-malware software on desktop systems.

48

Regularly scan for vulnerabilities and comply with security policies, the key is to do this
regularly.

The best way to do this is to automate it so that it does not become a problem and can be
integrated as part of the deployment process.

Ensure that the software supply chain is properly secured. From an attacker’s perspective,
attacking the supply chain may be the easiest way to reach most, if not all, of an organisation’s
systems.

Implement proactive measures and adopt a zero-trust policy. This applies to containers as well
as traditional environments.

Implement password validation best practices, such as avoiding common words and using long
phrases that are easier for humans to remember but harder for machines to crack.

Educate staff on basic security principles, such as being wary of suspicious emails, recognising
suspicious links and managing data to avoid storing critical data in unsecured locations.

Perform regular backups and always keep a cold backup in a separate physical location with no
network access. Ensure that recovery procedures are tested regularly.

Automate the provisioning of your infrastructure so that you can restore your systems quickly -
time is money.

Have a disaster recovery plan in place and ensure it is tested regularly.

49

Chapter 21. Malicious Mining Software
(Crypto-Miner)

Starting in 2018 Malware authors are increasingly relying on malicious mining software. This year
for the first time there have been more infections of this type than with ransomware. More and
more online criminals seem to turn their backs on ransomware and rely on crypto-miner. They
secretly dig crypto money on infected computers - Monero is particularly popular. This is obviously
extremely lucrative, as the latest figures show.

Reasons for the turnaround? If a ransomware/Trojan strikes and encrypts data from victims, they
usually have to pay a ransom in the form of bitcoins. This is an obstacle that not every victim can or
will take. Crypto-miner, on the other hand, only needs to infect computers. Afterwards, they dig in
secret without any sacrifices and make silently sure that they bring the authors big profits - and not
too short when you look at the exploding prices of different crypto currencies.

Nowadays even commercial antivirus software tries to use the user computer when idle for mining.
So this kind of software is both a malware scanner and malware itself :~(

50

Chapter 22. Greyware

Grayware (or greyware) is a general term sometimes used as a classification for applications that
behave in a way that is annoying or unwanted, but less serious or problematic than malware.
Grayware includes spyware, adware, dialers, joke programs, remote access tools and any other
unwanted files and programs other than viruses that are designed to affect the performance of
computers. The term has been in use since at least September 2004.

Grayware refers to applications or files that are not classified as viruses or Trojans, but can still
affect the performance of computers on the user’s network and pose significant security risks to the
user’s business. Grayware often performs a number of unwanted actions, such as annoying users
with pop-up windows, tracking user habits and unnecessarily exposing the computer to attacks.

22.1. Scam

"Scam is a term used to describe a fraudulent scheme or deception in which someone is tricked into
giving away money or personal information. Scams can take many different forms, such as
phishing scams, investment scams, lottery scams and technical support scams, to name a few.

Phishing scams are attempts to trick people into revealing sensitive information, such as passwords
or credit card numbers, by posing as a trustworthy entity. Investment scams persuade people to
invest money in a bogus business or financial scheme with the promise of high returns. Lottery
scams are messages informing people that they have won a large sum of money in a lottery, but
asking them to pay a small fee or provide personal information to claim the prize. Tech support
scams are attempts to trick people into paying for unnecessary computer support services by
pretending to be from a reputable tech company.

Scammers often use persuasion and urgency to get people to hand over money or personal
information. It is important to be wary of unsolicited messages or offers, and to independently
verify the legitimacy of any request for personal information or money. You can protect yourself
against fraud by being aware of common scams, being wary of unsolicited messages or offers, and
never giving out personal information or money without verifying the identity of the recipient.

22.2. Adware

Adware is software that displays advertising banners in web browsers such as Chrome, Internet
Explorer and Mozilla Firefox. Although it is not classified as malware, many users find adware
invasive. Adware programs often have undesirable effects on a system, such as annoying pop-up
ads and general degradation of network connection or system performance. Adware programs are
usually installed as separate programs bundled with certain free software from websites. Many
users inadvertently agree to install adware by accepting the End User License Agreement (EULA) of
the free software. Adware is also often installed together with spyware programs. Both programs
benefit from each other’s features - spyware programs profile users' Internet behavior, while
adware programs display targeted advertisements that correspond to the collected user profile.

31

22.3. Spyware

Spyware is a type of computer virus that hides on your computer or mobile device, records your
private data and sends that information back to whoever created it or monitors it. The tricky thing
about spyware, and what separates it from the growing threat of ransomware is the fact that,
spyware is designed to both install discretely and operate silently in the background.

Spyware is software that installs components on a computer to record browsing habits (primarily
for marketing purposes). Spyware sends this information to its creator or to other interested parties
when the computer is online. Spyware is often downloaded along with other components that are
referred to as "free downloads" or "freeware" without informing the user about their existence or
asking for permission to install them. The information that spyware components collect can include
user’s keystrokes (keylogging), which means that private information such as login names,
passwords and credit card numbers can be stolen. Spyware collects data, such as account names,
passwords, credit card numbers and other confidential information, and transmits it to third
parties.

22.4. Malvertising

Malvertising, a combination of "malicious" and "advertising", refers to the distribution of malware
through online advertising. Cybercriminals use legitimate ad networks to place malicious ads on
trusted websites. Users can become infected by clicking on or even just viewing these ads.

How it works

* Inclusion in ad networks: Malicious ads are injected into legitimate networks.
» Spread on websites: These ads appear on popular websites.

* Distribution of malware: Clicking on or viewing the ad can lead to malware infection.
Types of malware

* Ransomware: Encrypts files and holds them for ransom.
» Spyware: Steals confidential information.
* Adware: Displays unwanted advertisements.

* Trojans: Allow unauthorised access to systems.
Protective measures

* Ad blockers: Prevent malicious ads from loading.

Updated software: Reduces risks from known vulnerabilities.
 Security software: Antivirus programs and firewalls provide protection.

* Be careful what you click: Avoid clicking on suspicious ads.

32

Chapter 23. Backdoors

A point of access to a hidden program/system. Backdoors are usually intentionally created by a
programmer for debugging or maintenance purposes, but if compromised, they can pose a security
risk to unauthorized users or software, allowing access and causing damage. Malware often installs

Backdoors on compromised systems!

33

Chapter 24. Botnets

A bot is a programs that run automated tasks over the Internet. Botnets are collection of bots that
run autonomously and automatically. Typically they perform repetitive tasks at a much higher rate
than a human is capable of. They can be used for malicious purposes, such as denial of service
attacks or infecting other computers. An infected computer is called a bot or zombie.

54

Chapter 25. Macro viruses

A macro is a piece of code that can be embedded in a data file. A macro virus is thus a virus that
exists as a macro attached to a data file. In most respects, macro viruses are like all other viruses.
The main difference is that they are attached to data files (i.e., documents) rather than executable
programs. Document-based viruses are, and will likely continue to be, more prevalent than any
other type of virus.

55

Chapter 26. Worms

Worms are very similar to viruses in that they are computer programs that replicate functional
copies of themselves (usually to other computer systems via network connections) and often, but
not always, contain some functionality that will interfere with the normal use of a computer or a
program. Unlike viruses, however, worms exist as separate entities; they do not attach themselves
to other files or programs. Because of their similarity to viruses, worms also are often referred to as

viruses.

36

Chapter 27. Protestware

In March 2022, a developer of node-ipc was caught adding malicious code to the popular open
source package that deleted files on computers in Russia and Belarus. This was part of a protest that
angered many users and raised concerns about the security of free and open source software. The
node-ipc update is just one example of what some researchers call protestware. Most protest
programs related to the Russian invasion of Ukraine simply display anti-war and pro-Ukrainian
messages. However, in at least one project, virus-like code was added that aimed to cripple
computers in Russia and Belarus. This led to criticism and accusations of causing collateral damage.
But there are also examples of protest in the open source scene. Observers of the scene so far found
about two dozen software projects that inserted "code against war."

Open-source programs can be modified and viewed by anyone, making them more transparent -
and, at least in this case, more vulnerable to sabotage. The protestware event highlights some of the
risks that arise when legions of volunteer developers create the code that is critical to running
hundreds or thousands of other applications. Some open source software automatically downloads
and integrates new versions, and even for those that don’t, the vast amount of code often makes
manual review infeasible. This means that an update by a single person can mess up an untold
number of downstream applications. In that sense, this can be considered a "game changer."

Russia’s largest bank has asked its customers to stop updating its software because it is under
threat from "protestware". In response to the threat, Russian state-owned bank Sberbank even
advised its Russian customers to manually check the source code of the software they need - a
security measure that is not feasible for most users. "We urge users to stop updating software and
developers to tighten monitoring when using external code,” Sberbank said, according to Russian
media and cybersecurity firms.

57

Chapter 28. Stealth viruses

What is a stealth virus? A stealth virus is one that, while active, hides the modifications it has made
to files or boot records. It usually achieves this by monitoring the system functions used to read
files or sectors from storage media and forging the results of calls to such functions. This means
that programs that try to read infected files or sectors see the original, uninfected form instead of
the actual, infected form. Thus the virus’s modifications may go undetected by antivirus programs.
However, in order to do this, the virus must be resident in memory when the antivirus program is
executed, and the antivirus program may be able to detect its presence.

The very first DOS virus, Brain, a boot-sector infector for example monitored physical disk
input/output and redirected any attempt to read a Brain-infected boot sector to the disk area where
the original boot sector was stored.

28.1. File stealth viruses

In addition to hiding the boot information, DOS file stealth viruses attack .com and .exe files when
opened or copied, and hide the file size changes from the DIR command. The major problem arises
when you try to use the CHKDSK/F command and there appears to be a difference in the reported
files size and the apparent size. CHKDSK assumes this is the result of some cross-linked files and
attempts to repair the damage. The result is the destruction of the files involved.

28.2. Full stealth viruses

With a full stealth virus, all normal calls to file locations are cached, while the virus subtracts its
own length so that the system appears clean.

28.3. Countermeasures against Stealth Viruses?

You need a clean system so that no virus is present to distort the results of system status checks.
Thus you should start the system from a trusted, clean, bootable diskette before you attempt any
virus checking.

38

Chapter 29. Encryption

One method of evading malware detection is to use simple encryption to encipher (encode) the
body of the malware, leaving only the encryption module and a static cryptographic key in clear
text which does not change from one infection to the next.

29.1. What is a polymorphic virus?

A polymorphic virus is one that produces varied but operational copies of itself. This strategy
assumes that virus scanners will not be able to detect all instances of the virus. One method of
evading scan-string driven virus detectors is self-encryption with a variable key. Polymorphic code
was the first technique that posed a serious threat to virus scanners.

More sophisticated polymorphic viruses (e.g., V2P6) vary the sequences of instructions in their
variants by interspersing the decryption instructions with "noise" instructions (e.g., a No OPeration
instruction (NOP), or an instruction to load a currently unused register with an arbitrary value), by
interchanging mutually independent instructions, or even by using various instruction sequences
with identical net effects (e.g., Subtract A from A, and Move 0 to A). A simple-minded, scan-string
based virus scanner would not be able to reliably identify all variants of this sort of virus; in this
case, a sophisticated scanning engine has to be constructed after thorough research into the
particular virus.

One of the most sophisticated forms of polymorphism used so far is the Mutation Engine (MtE) or
the Trident Polymorph Engine (TPE), which comes in the form of an object module. With such
mutation engines, any virus can be made polymorphic by adding certain (API) calls to its assembler
source code and linking to the mutation-engine and provided random-number generator modules.

The advent of polymorphic viruses has rendered virus scanning an increasingly difficult and
expensive endeavor; adding more and more search strings to simple scanners will not adequately
deal with these viruses.

39

Chapter 30. What is an armored virus?

Armored viruses use special tricks to make the tracing, disassembling, and understanding of their
code more difficult. A good example is the Whale virus. An armored virus uses various techniques
to evade detection, such as encrypting its code, obfuscating its code, and using anti-debugging and
anti-tampering methods.

Armored viruses pose a serious threat because they can be used to perform malicious activities
such as stealing sensitive information, altering or corrupting data, and slowing performance
without being detected. They can also be used as part of more complex attacks, such as advanced
persistent threats (APTs), to maintain a foothold on a target network over an extended period of
time.

60

Chapter 31. What is Phishing/Vishing?

Phishing and vishing are types of scams used to steal sensitive information such as passwords,
credit card numbers and other personal data.

Phishing is a type of scam that tricks people into providing sensitive information through fake
emails or websites that appear to be from a reputable source, such as a bank or a well-known
company. The goal of phishing scams is to trick people into revealing personal information, such as
passwords or credit card numbers, by posing as a trustworthy entity.

Vishing, short for voice phishing, is a type of phishing scam where people are tricked into revealing
sensitive information over the phone. In vishing scams, scammers often pretend to be from a bank,
government agency or technology company and use persuasive techniques to get people to reveal
sensitive information.

Both phishing and vishing scams are becoming increasingly sophisticated and it is important to be
wary of unsolicited emails or phone calls. To protect yourself from these types of scams, never
provide sensitive information in response to an unsolicited request and independently verify the
identity of the recipient before providing any personal information.

61

Chapter 32. Secure Boot/UEFI/Firmware
Malware

In 2012, an industry-wide coalition of hardware and software makers adopted Secure Boot as a
crucial defense mechanism against a growing and sophisticated security threat: malware targeting
the system’s firmware, specifically the BIOS. The BIOS, or Basic Input/Output System, is the
firmware responsible for initializing hardware components and loading the operating system every
time a computer is powered on. Malware that infects the BIOS poses an especially insidious threat
because it can establish a foothold deep within the system, evading traditional detection methods
and persisting through operating system reinstalls. Once entrenched, such malware can execute
before the operating system and any security software, making it extremely difficult to detect and
remove.

The threat of BIOS-dwelling malware had long been considered theoretical, heightened by the
creation of the ICLord BIOS rootkit by a Chinese researcher in 2007. ICLord was a proof-of-concept
rootkit, a type of malware designed to gain and maintain privileged access to a system while
remaining hidden from standard security measures. This proof of concept not only demonstrated
the feasibility of BIOS rootkits but also underscored their potential power. While ICLord remained
a theoretical threat, it set the stage for the realization of more dangerous malware.

In 2011, the landscape of firmware security changed dramatically with the discovery of Mebromi,
the first-known BIOS rootkit to be observed in the wild. Mebromi marked the transition from
theoretical to actual threat, underscoring the vulnerability of BIOS firmware to sophisticated
attacks. Mebromi was capable of infecting the BIOS, overwriting it with malicious code, and
maintaining persistence even after the operating system was reinstalled—a stark reminder of the
critical need for stronger security measures.

Recognizing the severity of the threat posed by Mebromi and other potential firmware attacks, the
architects of Secure Boot developed a sophisticated security framework aimed at fortifying the pre-
boot environment. Integrated into the Unified Extensible Firmware Interface (UEFI)—which was
designed to replace the aging BIOS system—Secure Boot leverages public-key cryptography to
verify the integrity and authenticity of firmware and software components before they are loaded.
Specifically, Secure Boot only allows the execution of code that is signed with a recognized and
trusted digital signature, effectively preventing unauthorized or malicious code from
compromising the system at such an early and vulnerable stage.

To this day, Secure Boot is regarded by security experts and organizations—including Microsoft and
the US National Security Agency—as a foundational element in protecting devices, particularly in
critical environments such as industrial control systems and enterprise networks. Its role in
establishing a chain of trust from the hardware through to the operating system is considered
essential in defending against the sophisticated and persistent malware threats that continue to
evolve. The adoption of Secure Boot represents a significant milestone in the ongoing effort to
enhance cybersecurity and protect against the increasingly complex landscape of malware attacks.

In 2024 Secure Boot is considered to be broken because cryptografic keys to protect secure boot
were leaked (PKfail)

62

32.1. UEFI Bootkits in General

UEFI bootkits are a type of malware that hides in the UEFI firmware of a computer. UEFI is a
software program that controls the boot process of boot process and execute malicious code before
the operating system even starts.

» UEFI bootkits are difficult to detect and remove because they hide in the UEFI firmware.

» UEFI bootkits can be used to install persistent malware that remains active even after the
operating system is reinstalled.

» UEFI bootkits can be used to steal sensitive data, such as passwords and bank details.
Countermeasures:

* Enable UEFI Secure Boot to prevent unauthorized code from running during the boot process.
» Keep your system firmware and operating system up to date to patch vulnerabilities.

e Use reliable antivirus software to detect and remove UEFI bootKits.

32.2. Rootkits and Bootkits

Rootkits and bootkits are sophisticated forms of malware that compromise system integrity by
gaining unauthorized control over devices. Operating at low levels within an operating system or
firmware, they are particularly challenging to detect and remove. This document outlines their
functionality, types, techniques, and strategies for mitigation.

* Rootkits are tools that allow attackers to gain and maintain privileged access to a system while
concealing their presence.

* BootKkits are a specific type of rootkit that infects the boot process, compromising systems before
the operating system loads.

Both rootkits and bootkits pose significant security risks due to their stealthy operations and
privileged access capabilities. Both rootkits and bootkits often conceal their presence by altering
system internals. Traditional antivirus solutions may struggle to detect them due to their low-level
operations.

Rootkits and bootkits represent significant threats to modern computing environments due to their
stealthy nature and privileged access capabilities. Effective detection and mitigation require robust
security practices, including hardware-based protections, monitoring tools, and proactive patching.
Understanding these threats is essential for safeguarding critical systems and sensitive data.

63

Chapter 33. Links / Pointers

https://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms

64

https://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms

Chapter 34. Some very old (DOS) viruses that
were very widespread in the past

MS-DOS viruses were particularly prevalent during the early days of personal computing,
exploiting the relatively limited security measures of that era. Here are some notable MS-DOS
viruses:

34.1. CIH (Chernobyl)

* Origin: Taiwan, 1998
» Type: File virus

* Description: Known for its destructive payload that triggered on April 26, it could overwrite
critical parts of the BIOS, rendering computers unbootable. Although not an MS-DOS virus, it
affected Windows 9x systems that were based on DOS.

34.2. Sasser

* Origin: Germany, 2004
* Type: Worm

* Description: While not strictly an MS-DOS virus, Sasser exploited vulnerabilities in Windows
systems to spread. It caused widespread disruptions in the early 2000s.

34.3. Melissa

* Origin: USA, 1999
* Type: Macro virus

* Description: This virus spread through Microsoft Word documents and email, causing
substantial email server disruptions. While primarily a macro virus, its impact was significant
across various Windows environments.

34.4. Lehigh

* Origin: USA, 1987
» Type: Boot sector virus

* Description: One of the early boot sector viruses, it specifically targeted the master boot record
and could corrupt the entire hard disk.

34.5. Form

* Origin: Probably Swiss, early 1990s

» Type: Boot sector virus

65

* Description: This virus became widely known for its payload that activated on the 18th of each
month, causing the keyboard to behave erratically.

34.6. E1k Cloner

* Origin: USA, 1982
» Type: Boot sector virus (on Apple II, not MS-DOS, but historically significant)

* Description: One of the earliest known viruses, it displayed a poem on the 50th boot of an
infected system. Although not an MS-DOS virus, it is significant in the history of computer
viruses.

34.7. Ping Pong (Bouncing Ball)

* Origin: Italy, 1988
* Type: Boot sector virus

* Description: This virus caused a bouncing ball effect on the screen and infected the boot sector
of floppy disks.

These viruses highlight the diverse strategies employed by malware developers in the MS-DOS era,
from boot sector infections to file-based and polymorphic techniques, illustrating the early
challenges of computer security.

34.8. The Brain Virus: The Birth of the Computer Virus
Era

The Brain virus, often cited as the first IBM PC-compatible virus, marked a significant milestone in
the history of computer security. Created in 1986 by two brothers in Pakistan, it initiated an era of
growing cybersecurity threats and responses.

The Brain virus was developed by Basit and Amjad Farooq Alvi, who operated a computer store in
Lahore, Pakistan. Frustrated with the piracy of their medical software, they created the virus as a
form of copy protection, embedding their contact information within the code to raise awareness
about piracy.

The Brain virus serves as a historical landmark in cybersecurity, highlighting the early challenges
of digital security and the unintended consequences of technological interventions. It underscored
the need for ongoing vigilance and education in the evolving landscape of cybersecurity.

34.8.1. Technical Details

The Brain virus is a boot sector virus, infecting the boot sector of storage media like floppy disks. It
becomes resident in memory when the computer boots from an infected disk and then infects any
clean disks accessed by the system. It displays a message with the authors' names and contact
details, an unusual feature among viruses.

Infection Mechanism:

66

* Boot Process: Loads into memory during boot from an infected disk.
* Replication: Spreads to other disks accessed by the infected computer.

* Infected Message: Displays a message with the creators' contact information.
Attributes:

* Memory Resident: Remains active until the computer is turned off.
» Stealth Techniques: Hides its presence by intercepting system calls.

* Non-Destructive: Does not delete or corrupt files, focusing instead on spreading and delivering
a message.

34.8.2. Impact and Spread

The Brain virus’s impact was significant, as it was the first widely recognized PC boot virus. It
spread rapidly through the common practice of sharing floppy disks, reaching users worldwide by
the late 1980s.

Geographical Spread:
* Local to Global: Initially spread within Pakistan, then globally through shared software.
Economic and Social Impact:

* Awareness and Fear: Raised awareness about computer security and vulnerabilities.

* Economic Consequences: Prompted investments in antivirus software and improved security
practices.

34.9. Cascade

Cascade virus (also known as Herbstlaub in Germany) is a well-known DOS computer virus that is a
memory-resident virus written in assembly language. Cascade was widely spread in the 1980s and
early 1990s. It infected DOS .COM files and caused the text on the screen to cascade down and form
a pile at the bottom of the screen. It was notable for the fact that it used an encryption algorithm to
avoid detection. However, it could be seen that the size of the infected files increased by 1701 or
1704 bytes. In response, IBM developed its own anti-virus software.

When a file infected with Cascade is introduced into a system and executed, the virus checks the
BIOS for the string "COPR. IBM", an IBM copyright notice in the BIOS. If it finds the string, it tries to
stop there, but fails, and the virus becomes memory resident. Every time a .COM file is executed,
the virus starts infecting it. It replaces the first three bytes of the new host file with code that
references the virus code. The virus places the original first three bytes of the host into its own
code.

Cascade’s payload is executed when an infected file is executed between October 1 and December
31, 1988. It causes characters on a DOS screen to randomly drop down in a pile of numbers and
letters. Variants can also cause noise.

The virus has a number of variants. Cascade-17Y4, which is believed to have originated in

67

Yugoslavia, is almost identical to the most common 1704-byte variant. One byte has been changed,
probably by a random "mutation". However, this has resulted in a "bug" in the virus. Another
mutated variant is also known - it infects the same file over and over again.

34.10. Jerusalem

Jerusalem is a DOS virus which was first detected in Jerusalem in October 1987. Its origin is
uncertain, as it was thought to have originated in Israel, but evidence from 1991 suggests that it
may have originated in Italy. As of 1993, Jerusalem was still in the wild and many variants had been
created. The last reported case of Jerusalem was in 1995, almost 8 years after its discovery. The
virus has gone by many names, some referring to its possible origin and its Friday the 13th payload
date. Jerusalem was initially very common (for a virus at the time) and spawned a large number of
variants. However, since the advent of Windows, these DOS interrupts are no longer used, so
Jerusalem and its variants have become obsolete.

Once infected, the Jerusalem virus becomes memory resident (using 2kb of memory) and then
infects every executable file that is run, except for COMMAND.COM. COM files grow by 1,813 bytes
when infected by Jerusalem and are not re-infected. EXE files grow between 1,808 and 1,823 bytes
each time they are infected. The virus re-infects .EXE files each time they are loaded until they are
too large to load into memory. Some .EXE files are infected but do not grow because multiple
overlays follow the real .EXE file in the same file. Sometimes .EXE files are infected by mistake, so
that the programme fails to run when it is run.

The virus code itself hooks into interrupt processing and other low level DOS services. For example,
code in the virus suppresses the printing of console messages if, for example, the virus is not able to
infect a file on a read-only device such as a floppy disk. One of the clues that a computer is infected
is the mis-capitalization of the well-known message "Bad command or file name" as "Bad Command
or file name".

The program contains one destructive payload that is set to go off on Friday the 13th, all years but
not in 1987. On that date, the virus deletes every program file that was executed. Jerusalem is also
known as BlackBox because of a black box it displays during the payload sequence. If the system is
in text mode, Jerusalem creates a small black rectangle from row 5, column 5 to row 16, column 16.
The rectangle is scrolled up by two lines.

As a result of the virus hooking into the low-level timer interrupt, PC-XT systems slow down to one
fifth of their normal speeds 30 minutes after the virus has installed itself. The slowdown is less
noticeable on faster machines. The virus contains code that enters a processing loop each time the
processor’s timer tick is activated.

Symptoms also include spontaneous disconnection of workstations from networks and creation of
large printer spooling files. Disconnections occur since Jerusalem uses the 'interrupt 21h' low-level
DOS functions that Novell Netware and other networking implementations required to hook into
the file system.

Variants

Over the years that Jerusalem spread, many virus coders created variants of the virus, making
Jerusalem one of the largest families of viruses ever created. It even includes many sub-variants
and a few sub-sub-variants. Most variants are unimaginative, simply changing the payload date,

68

text displayed or even nothing at all. Some variants contain fixes for the bugs of the original.

Jerusalem.1013 Jerusalem.1024 Jerusalem.1234 Jerusalem.1237 Jerusalem.1238
Jerusalem. 1241 Jerusalem.1244 Jerusalem.1264 Jerusalem.1291 Jerusalem.1329
Jerusalem. 1347 Jerusalem.1348 Jerusalem.1349 Jerusalem.1353 Jerusalem.1356
Jerusalem. 1361 Jerusalem.1363 Jerusalem.1364 Jerusalem.1390 Jerusalem.1399
Jerusalem. 1408 Jerusalem.1427 Jerusalem.1446 Jerusalem.1448 Jerusalem.1455
Jerusalem. 1459 Jerusalem.1477 Jerusalem.1478 Jerusalem.1487 Jerusalem.1488
Jerusalem.1489 Jerusalem.1500 Jerusalem.1503 Jerusalem.1504 Jerusalem.1511
Jerusalem.1518 Jerusalem.1521 Jerusalem.1522 Jerusalem.1523 Jerusalem.1524
Jerusalem.1525 Jerusalem.1526 Jerusalem.1530 Jerusalem.1533 Jerusalem.1536
Jerusalem. 1548 Jerusalem.1552 Jerusalem.1558 Jerusalem.1562 Jerusalem.1568
Jerusalem.1570 Jerusalem.1587 Jerusalem.1589 Jerusalem.1591 Jerusalem.1596
Jerusalem.1598 Jerusalem.1605 Jerusalem.1607 Jerusalem.1624 Jerusalem.1631
Jerusalem.1639 Jerusalem.164@ Jerusalem.1653 Jerusalem.1664 Jerusalem.1682
Jerusalem.1692 Jerusalem.1715 Jerusalem.1716 Jerusalem.1720 Jerusalem.1721
Jerusalem.1728 Jerusalem.1733 Jerusalem.1735 Jerusalem.1747 Jerusalem.1756
Jerusalem.1765 Jerusalem.1767 Jerusalem.1768 Jerusalem.1783 Jerusalem.1792
Jerusalem. 1807 Jerusalem.1808 Jerusalem.1813 Jerusalem.1824 Jerusalem.1845
Jerusalem. 1884 Jerusalem.1888 Jerusalem.1899 Jerusalem.1960 Jerusalem.1968
Jerusalem.1970 Jerusalem.1975 Jerusalem.1984 Jerusalem.1991 Jerusalem.2000
Jerusalem.2012 Jerusalem.2027 Jerusalem.2053 Jerusalem.2064 Jerusalem.2080
Jerusalem.2082 Jerusalem.2083 Jerusalem.2116 Jerusalem.2126 Jerusalem.2128
Jerusalem.2132 Jerusalem.2187 Jerusalem.2208 Jerusalem.2223 Jerusalem.2224
Jerusalem.2272 Jerusalem.2291 Jerusalem.2350 Jerusalem.2358 Jerusalem.2368
Jerusalem.2389 Jerusalem.2437 Jerusalem.2465 Jerusalem.2472 Jerusalem.2490
Jerusalem.2576 Jerusalem.2758 Jerusalem.2880 Jerusalem.2886 Jerusalem.3887
Jerusalem.4112 Jerusalem.5120 Jerusalem.641 Jerusalem.662 Jerusalem.679
Jerusalem.878 Jerusalem.880 Jerusalem.986 Jerusalem.A Jerusalem.CVEX
Jerusalem.Curse Jerusalem.June11_T3Scan Jerusalem.Plastique
Jerusalem.Roger Jerusalem.a Jerusalem.com Jerusalem.sURIV_3

34.11. The Tequila Virus

It was one of the early examples of a polymorphic virus, making it harder to detect by antivirus
software because it changed its code each time it infected a new file. The Tequila virus, originating
in Switzerland in 1991, is one of the earliest examples of polymorphic malware. This advanced
virus significantly impacted the evolution of malware and cybersecurity strategies by evading
detection through code mutation.

34.11.1. Technical Details

The Tequila virus infected executable ((EXE) files on DOS-based systems. It was a memory-resident
virus that used polymorphism to alter its code with each new infection, making it difficult for
signature-based antivirus programs to detect it.

Infection Mechanism:

1. File Infection: Attaches to executable files, embedding its encrypted code.

69

2. Memory Residency: Becomes resident in memory upon execution of an infected file, allowing
it to infect other executables.

3. Polymorphism: Uses a mutation engine to change its code with each infection, evading
detection.

Technical Attributes:

* Encryption: Hides its presence within infected files using encryption.
* Mutation Engine: Alters its code with each infection, complicating detection.

» Payload: Displays a fractal, alerting users to its presence.

Tequila pioneered polymorphic techniques, influencing future malware development and antivirus
strategies. The Tequila virus was a landmark in the history of computer viruses, demonstrating
sophisticated polymorphic techniques that challenged and shaped the development of antivirus
technologies and cybersecurity strategies.

34.12. Stoned

The Stoned Virus Family: A Legacy of Boot Sector Infections

Stoned is a very large family of boot sector viruses on the DOS platform, originating in early 1988.
This family of viruses became infamous for its persistent and insidious nature, with notable
members such as the Michelangelo virus, which incited widespread panic in the early 1990s, and
the Angelina virus from 1994, which notably resurfaced on infected laptops as late as 2007. The
Stoned virus was allegedly created by a student at the University of Wellington in New Zealand.

34.12.1. Mechanism of Infection

When a computer boots from an infected hard drive, Stoned becomes resident in memory,
establishing a foothold in the system. If the computer boots from a disk other than the hard disk,
Stoned checks the master boot record (MBR) of the hard disk and infects it if it is clean.

* Floppy Disk Infection: When infecting a floppy disk, Stoned relocates the master boot record to
sector 11 and places its own code in sector 0.

* Hard Disk Infection: When infecting the hard disk, it moves the MBR to page 0, cylinder 0,
sector 7, and places itself in page 0, cylinder 0, sector 1.

The original variant of the Stoned virus targets only 360-kilobyte 5.25-inch floppy disks and hard
disks.

Once resident in memory, Stoned infects the MBRs of all accessed floppy disks but does not reinfect
the hard disk. Even if the virus is removed from the MBR while it is still in memory, it does not
attempt to reinfect the hard disk.

34.12.2. Payload and Effects

The Stoned virus has a 1 in 8 chance of releasing its payload during the boot process. When this
happens, the infected computer emits a beep and displays the following message:

70

Your PC is now stoned! LEGALIZE MARIJUANA!

34.12.3. Prominent Members

1. Michelangelo Virus: This variant caused significant panic in the early 1990s. Despite the media
hype, it infected only a few thousand computers, demonstrating how fear and misinformation
can amplify perceived threats.

2. Angelina Virus: Identified in 1994, this variant became notable again in 2007 when it was
discovered on laptops that had been sold with pre-existing infections. This resurgence
highlighted the enduring nature of some viruses and the importance of rigorous cybersecurity
measures.

34.12.4. Legacy and Impact

The Stoned virus family exemplifies the early challenges of cybersecurity and the evolving nature
of computer threats. Despite its relatively simple mechanics by today’s standards, the impact of the
Stoned virus family was profound, illustrating the vulnerabilities in early computing systems and
the significant role of media in shaping public perception of cybersecurity threats.

34.13. Michelangelo

Michelangelo Virus: A Case of Media-Driven Panic

The Michelangelo virus, which stems from the Stoned boot virus family, is renowned for being one
of the first computer viruses to garner widespread media attention. While it incited substantial
panic, the actual damage it inflicted was minimal. The virus infected only a few thousand
computers, making it a classic example of media-induced hysteria.

The media frenzy began in January 1992 when two coincidental events sparked interest. One
computer manufacturer inadvertently shipped 500 computers infected with the Michelangelo
virus. On the same day, another manufacturer announced it would begin shipping computers with
pre-installed antivirus software. This concurrence captured the media’s attention, leading to a
flurry of sensationalist reporting.

United Press International played a pivotal role in escalating the panic by interviewing key figures
in the cybersecurity field. Among them was the International Partnership Against Computer
Terrorism and John McAfee, the president of a prominent antivirus company. These interviews
fueled fears, with projections suggesting that hundreds of thousands of computers could be
destroyed by the virus. Data recovery consultant Martin Tibor further amplified concerns with
dramatic statements like "I find virus disasters everywhere" and "I see victims of viruses all the
time."

In the weeks leading up to the virus’s activation date, the media focused heavily on the potential
local impact. Some outlets chose to report more on the growing hysteria than on factual
information about the virus itself. Few took the initiative to consult with real experts to mitigate the
panic. As a result, a significant number of computer users rushed to purchase antivirus software,
driven by the fear of imminent digital disaster.

71

In hindsight, the Michelangelo virus serves as a poignant reminder of the power of media in
shaping public perception and the importance of critical evaluation of such reports. While the virus
itself was relatively harmless, the surrounding hype created a disproportionate sense of urgency
and fear among computer users.

/* End of Document */

72

Chapter 35. Copyright

_____ /] N\
D IR \\ A/ /]
\ \\ /|
/] AN
\/ \/ \/

©opyright by
. N\ J
| VAV
[VA IV
|| AN /e
\/ \/
ROSE SWE

Dipl.-Ing. Ralph Roth
http://rose.rult.at
rose_swe@hotmail.com

See ROSEBBS.TXT for

full address, FAX and PGP keys.

A1l Rights Reserved!

73

Chapter 36. End

End of the documentation! Thank you for reading it. Bye!

74

	RHBVS: ROSE SWE’s Heuristic Based Virus Scanner
	Table of Contents
	Chapter 1. Introducing RHBVS
	Chapter 2. Why?
	Chapter 3. Requirements
	3.1. SmallMem and BigMem Versions of RHBVS

	Chapter 4. Terms
	4.1. Heuristic (computer science)
	4.2. Computer Virus

	Chapter 5. Options and Switches
	5.1. Command Line Options
	5.2. The Option /virsort

	Chapter 6. User documentation
	Chapter 7. Virus classification
	7.1. Some terms

	Chapter 8. False Positives
	8.1. Known False Positives
	8.2. False positives causes by third party software

	Chapter 9. Error Codes
	Chapter 10. Technology
	Chapter 11. Bugs & Limits, Future
	Chapter 12. License
	Chapter 13. History
	13.1. Version 8
	13.2. Version 7
	13.3. Version 6
	13.4. Version 5
	13.5. Version 4
	13.6. Version 3
	13.7. Version 2
	13.8. Version 1
	13.9. Beta Versions

	Chapter 14. Credits
	Chapter 15. Files
	Chapter 16. Miscellaneous
	Computer Viruses and Malware - A Short Overview
	Chapter 17. Malware
	Chapter 18. (Computer) Virus
	18.1. Direct Action Viruses
	18.2. (Computer) Boot Virus
	18.3. Multipartite Virus

	Chapter 19. Trojan horses
	Chapter 20. Ramsomware
	20.1. Introduction to Ransomware
	20.2. Origins of Ransomware
	20.3. Evolution of Ransomware
	20.4. Modern Ransomware Characteristics
	20.5. Steps in a Ransomware Attack
	20.6. Mitigation and Defense
	20.7. Ramsonware: Conclusion & Best Practices

	Chapter 21. Malicious Mining Software (Crypto-Miner)
	Chapter 22. Greyware
	22.1. Scam
	22.2. Adware
	22.3. Spyware
	22.4. Malvertising

	Chapter 23. Backdoors
	Chapter 24. Botnets
	Chapter 25. Macro viruses
	Chapter 26. Worms
	Chapter 27. Protestware
	Chapter 28. Stealth viruses
	28.1. File stealth viruses
	28.2. Full stealth viruses
	28.3. Countermeasures against Stealth Viruses?

	Chapter 29. Encryption
	29.1. What is a polymorphic virus?

	Chapter 30. What is an armored virus?
	Chapter 31. What is Phishing/Vishing?
	Chapter 32. Secure Boot/UEFI/Firmware Malware
	32.1. UEFI Bootkits in General
	32.2. Rootkits and Bootkits

	Chapter 33. Links / Pointers
	Chapter 34. Some very old (DOS) viruses that were very widespread in the past
	34.1. CIH (Chernobyl)
	34.2. Sasser
	34.3. Melissa
	34.4. Lehigh
	34.5. Form
	34.6. Elk Cloner
	34.7. Ping Pong (Bouncing Ball)
	34.8. The Brain Virus: The Birth of the Computer Virus Era
	34.9. Cascade
	34.10. Jerusalem
	34.11. The Tequila Virus
	34.12. Stoned
	34.13. Michelangelo

	Chapter 35. Copyright
	Chapter 36. End

